scholarly journals Aspects of Franklinian shelf, slope and trough evolution and stratigraphy in North Greenland

1987 ◽  
Vol 133 ◽  
pp. 41-58
Author(s):  
F Surlyk ◽  
J.R Ineson

The Early Palaeozoic Franklinian basin of North Greenland was initiated in early Cambrian times with the onset of siliciclastic and mixed carbonate shelf deposition on a substratum of Proterozoic sediments and Precambrian crystalline basement. The basin rapidly differentiated into shelf, slope, and trough environments. The boundary between these major depositional regimes follows major roughly east-west trending lineaments. The inner-outer shelf transition fluetuated widely in position and was controlled by the interplay between sea-level changes and periodic northwards downwarping. In Ordovician-Silurian times the margin of the carbonate platform migrated northwards to coincide with the shelf-slope break and had a steep scarp configuration with an abrupt transition to the shales and turbidites of the deep-water basin. In this paper we pay special attention to the initial basin sequence (Skagen Group), the collapsed and broken platform carbonates of the Lower Cambrian Portfjeld Formation, the Middle - Late Cambrian inner-outer shelf transition and to the nature of the Silurian platform margin scarp.

1987 ◽  
Vol 155 ◽  
pp. 1-88
Author(s):  
P.R Dawes

Topographical and geological map sheets covering the northern part of Hall Land (81-82°N) are presented – an area of about 3000 km2. The maps are the products of a research programme in which newly developed photogrammetric techniques have been used in the interpretation and compilation of the topography and the geology (both solid and surficial). The topographical map has been constructed with a minimum of geodetic ground control. The topographic contours have been calculated from a digital elevation model using computer programmes, and automatically plotted out. The geological map has been hand-drawn from 74 manuscript sheets compiled from aerial photograph models on second-order analog stereo-plotting instruments with computer facilities. The maps, the photogrammetric programme and the solid and surficial geology are described in seven chapters. The first two provide an introductory background that explains the motivation for the research, summarises the history of cartographic, geodetic and geologic work and provides a status of research at the start of the programme. The third chapter discusses the various aspects of the photogrammetric programme, instrumentation and the on-line computer facilities utilised, and is followed by a chapter dealing with compilation method, map presentation and assessment of cartographic accuracy compared to previous maps and modern geodetic ground data. The next chapter describes the topography and geomorphology and relates the three main physiographic provinces to the solid and surficial geology. The penultimate chapter outlines the stratigraphy and structure of the Upper Ordovician-Silurian (Llandovery-Pridoli) section through the E-W trending Franklinian basin. In Ordovician-earliest Silurian time, the map area was part of the carbonate platform; in the Llandovery a major shift southwards of the deep-water basin occurred. The Silurian succession displays a regional facies change from platform carbonates in the south, through a major reef belt on the shelf and upper slope to, in the north, clastic turbidites of the lower slope and trough. Facies transitions and interdigitation of shelf-slope-trough lithologies are complex. The northern part of the map exposes the autochthonous margin of the mid-Palaeozoic North Greenland fold belt characterised by E-W folds. The regional structure is an asymmetric synclinorium; a decollement zone probably occurs in the shale sequence that overlies the Lower Silurian carbonate platform. The final chapter describes eight groups of Quaternary deposits and features: moraine, fluviatile-glaciofluvial, marine, lacustrine, colluvial, solifluction, aeolian and periglacial. Hall Land was formerly entirely ice covered, and deposits of several ice advances are preserved; six major marginal moraine systems are defined. Marine deposits are prominent and terrace levels and raised shorelines are well preserved; the Holocene marine limit is at least 125 m above present sea level. Major events are placed within a Pleistocene-Holocene chronostratigraphic framework. Comments on place names are given in an appendix.


1987 ◽  
Vol 133 ◽  
pp. 13-26
Author(s):  
J.R Ineson ◽  
J.S Peel

Cambrian sequences around the head of Nordenskiöld Fjord, central North Greenland, preserve the transition from platform interior carbonates of the Ryder Gletscher Group (redefined) to outer shelf-slope and platform margin sequences assigned to the Brønlund Fjord and Tavsens Iskappe Groups. Study of this transition has allowed redefinition and integration of these two stratigraphic schemes. Shallow subtidal to intertidal, well-bedded carbonates of the platform interior grade north-eastwards into high-energy grainstones and algal boundstones of the platform margin complex. Platform foreslope facies show well-developed clinoform bedding and wedge out into dark carbonates and clastics of the outer shelf sequence.


Author(s):  
Jon R. Ineson ◽  
John S. Peel

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Ineson, J. R., & Peel, J. S. (1997). Cambrian shelf stratigraphy of North Greenland. Geology of Greenland Survey Bulletin, 173, 1-120. https://doi.org/10.34194/ggub.v173.5024 _______________ The Lower Palaeozoic Franklinian Basin is extensively exposed in northern Greenland and the Canadian Arctic Islands. For much of the early Palaeozoic, the basin consisted of a southern shelf, bordering the craton, and a northern deep-water trough; the boundary between the shelf and the trough shifted southwards with time. In North Greenland, the evolution of the shelf during the Cambrian is recorded by the Skagen Group, the Portfjeld and Buen Formations and the Brønlund Fjord, Tavsens Iskappe and Ryder Gletscher Groups; the lithostratigraphy of these last three groups forms the main focus of this paper. The Skagen Group, a mixed carbonate-siliciclastic shelf succession of earliest Cambrian age was deposited prior to the development of a deep-water trough. The succeeding Portfjeld Formation represents an extensive shallow-water carbonate platform that covered much of the shelf; marked differentiation of the shelf and trough occurred at this time. Following exposure and karstification of this platform, the shelf was progressively transgressed and the siliciclastics of the Buen Formation were deposited. From the late Early Cambrian to the Early Ordovician, the shelf showed a terraced profile, with a flat-topped shallow-water carbonate platform in the south passing northwards via a carbonate slope apron into a deeper-water outer shelf region. The evolution of this platform and outer shelf system is recorded by the Brønlund Fjord, Tavsens Iskappe and Ryder Gletscher Groups. The dolomites, limestones and subordinate siliciclastics of the Brønlund Fjord and Tavsens Iskappe Groups represent platform margin to deep outer shelf environments. These groups are recognised in three discrete outcrop belts - the southern, northern and eastern outcrop belts. In the southern outcrop belt, from Warming Land to south-east Peary Land, the Brønlund Fjord Group (Lower-Middle Cambrian) is subdivided into eight formations while the Tavsens Iskappe Group (Middle Cambrian - lowermost Ordovician) comprises six formations. In the northern outcrop belt, from northern Nyeboe Land to north-west Peary Land, the Brønlund Fjord Group consists of two formations both defined in the southern outcrop belt, whereas a single formation makes up the Tavsens Iskappe Group. In the eastern outcrop area, a highly faulted terrane in north-east Peary Land, a dolomite-sandstone succession is referred to two formations of the Brønlund Fjord Group. The Ryder Gletscher Group is a thick succession of shallow-water, platform interior carbonates and siliciclastics that extends throughout North Greenland and ranges in age from latest Early Cambrian to Middle Ordovician. The Cambrian portion of this group between Warming Land and south-west Peary Land is formally subdivided into four formations.The Lower Palaeozoic Franklinian Basin is extensively exposed in northern Greenland and the Canadian Arctic Islands. For much of the early Palaeozoic, the basin consisted of a southern shelf, bordering the craton, and a northern deep-water trough; the boundary between the shelf and the trough shifted southwards with time. In North Greenland, the evolution of the shelf during the Cambrian is recorded by the Skagen Group, the Portfjeld and Buen Formations and the Brønlund Fjord, Tavsens Iskappe and Ryder Gletscher Groups; the lithostratigraphy of these last three groups forms the main focus of this paper. The Skagen Group, a mixed carbonate-siliciclastic shelf succession of earliest Cambrian age was deposited prior to the development of a deep-water trough. The succeeding Portfjeld Formation represents an extensive shallow-water carbonate platform that covered much of the shelf; marked differentiation of the shelf and trough occurred at this time. Following exposure and karstification of this platform, the shelf was progressively transgressed and the siliciclastics of the Buen Formation were deposited. From the late Early Cambrian to the Early Ordovician, the shelf showed a terraced profile, with a flat-topped shallow-water carbonate platform in the south passing northwards via a carbonate slope apron into a deeper-water outer shelf region. The evolution of this platform and outer shelf system is recorded by the Brønlund Fjord, Tavsens Iskappe and Ryder Gletscher Groups. The dolomites, limestones and subordinate siliciclastics of the Brønlund Fjord and Tavsens Iskappe Groups represent platform margin to deep outer shelf environments. These groups are recognised in three discrete outcrop belts - the southern, northern and eastern outcrop belts. In the southern outcrop belt, from Warming Land to south-east Peary Land, the Brønlund Fjord Group (Lower-Middle Cambrian) is subdivided into eight formations while the Tavsens Iskappe Group (Middle Cambrian - lowermost Ordovician) comprises six formations. In the northern outcrop belt, from northern Nyeboe Land to north-west Peary Land, the Brønlund Fjord Group consists of two formations both defined in the southern outcrop belt, whereas a single formation makes up the Tavsens Iskappe Group. In the eastern outcrop area, a highly faulted terrane in north-east Peary Land, a dolomite-sandstone succession is referred to two formations of the Brønlund Fjord Group. The Ryder Gletscher Group is a thick succession of shallow-water, platform interior carbonates and siliciclastics that extends throughout North Greenland and ranges in age from latest Early Cambrian to Middle Ordovician. The Cambrian portion of this group between Warming Land and south-west Peary Land is formally subdivided into four formations.


1998 ◽  
Vol 118 (1-4) ◽  
pp. 95-118 ◽  
Author(s):  
Robert Bourrouilh ◽  
Pierre-André Bourque ◽  
Pauline Dansereau ◽  
Françoise Bourrouilh-Le Jan ◽  
Pierre Weyant

1992 ◽  
Vol 6 ◽  
pp. 233-233
Author(s):  
John S. Peel ◽  
Simon Conway Morris ◽  
Jon R. Ineson

The Sirius Passet Fauna of North Greenland is one of the oldest Cambrian lagerstätten from the North American continent. It is known from a single locality in Peary Land (83°N, 40°W), on the shores of the Arctic Ocean, where outer shelf mudstones from the lower part of the Buen Formation (Early Cambrian) yield a rich assemblage of mainly poorly skeletised organisms with preserved soft parts. The steeply-dipping fossiliferous mudstones occur in close proximity to horizontally-bedded platform carbonates of the underlying Portfjeld Formation (Early Cambrian) in a structurally complex terrane. The boundary between the fossiliferous mudstones and the platform carbonates apparently defines the original northern margin of the carbonate platform and is not, as previously suggested, a structural feature, although some minor tectonic modification can not be excluded. Thus, the fossiliferous mudstones were apparently deposited in a transitional slope setting basinward of the shelf edge.As currently known, the Sirius Passet Fauna comprises about 40 species, based on a collection of almost 5,000 slabs collected during brief visits to the isolated locality in 1989 and 1991. Arthropods dominate, with bivalved bradoriids and the trilobite Buenellus higginsi Blaker, 1988 being the numerically most abundant taxa. Weakly skeletised Naraoia-like and Sidneyia-like arthropods often preserve limbs and gills, as do bivalved arthropods similar to Waptia. Choia is the most common of several sponges. Worms include both priapulids and polychaetes, with a large palaeoscolecidan being conspicuous.Fully articulated specimens of halkieriid worms, clad in an armour of hundreds of individual sclerites, are most notable amongst several problematic taxa. Rare specimens of possible onychophorans are also present, while brachiopods, hyoliths and other shelly fossils are rare or absent.The Sirius Passet Fauna seems to show little taxonomic similarity to the Middle Cambrian Burgess Shale of western Canada or the Chengjiang Fauna from the Lower Cambrian of China at the generic level. Together with the latter fauna, however, it confirms both the general picture of Cambrian life presented by the Burgess Shale, and the existence of this great diversity of weakly skeletised arthropods already in the Early Cambrian.


Author(s):  
Sven Monrad Jensen

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Monrad Jensen, S. (1998). Carbonate-hosted Zn-Pb-Ag mineralisation in Washington Land, western North Greenland. Geology of Greenland Survey Bulletin, 180, 67-72. https://doi.org/10.34194/ggub.v180.5088 _______________ The multidisciplinary research project ‘Resources of the sedimentary basins of North and East Greenland’ was initiated in 1995 with financial support from the Danish Research Councils (Stemmerik et al. 1996). In 1997, North Greenland field studies under this project were carried out by the Geological Survey of Denmark and Greenland (GEUS) in Washington Land. A two-week field season included sedimentological and petroleum geology-related studies, and reconnaissance exploration for economic mineral occurrences. Washington Land is made up of Cambrian – Lower Silurian carbonate platform and Lower Silurian reef belt successions of the Franklinian Basin. In northern Canada, platform carbonates of the Franklinian Basin host a major producing Zn-Pb deposit (Polaris) and several other sulphide occurrences (Kerr 1977; Gibbins 1991). The platform succession in North Greenland has received less attention from an exploration point of view, and to date only a few, scattered carbonate-hosted sulphide occurrences have been discovered (Jakobsen & Steenfelt 1985; von Guttenberg & van der Stijl 1993; Lind et al. 1994). One sulphide occurrence was known in Washington Land prior to the 1997 field work (Norford 1972; Lind et al. 1994).


1987 ◽  
Vol 133 ◽  
pp. 59-63
Author(s):  
F Surlyk ◽  
J.R Ineson

A new lithostratigraphical unit, the Navarana Fjord Member of latest Llandovery age, is formally erected in this paper. It consists of an up to 80 m thick sequence of amalgamated carbonate conglomerate beds. The member is presently known from the east and west coast of Navarana Fjord, central North Greenland. It rests or, Silurian carbonate platform to the south. To the north of the platform margin scarp it rests on and interfingers with turbidites of the Merqujôq Formation. The member is inc!uded in the Merquj6q Formation and forms an important marker reflecting the final foundering of the outer carbonate platform.


1988 ◽  
Vol 62 (01) ◽  
pp. 1-8 ◽  
Author(s):  
Ronald E. Martin

The utility of benthic foraminifera in bathymetric interpretation of clastic depositional environments is well established. In contrast, bathymetric distribution of benthic foraminifera in deep-water carbonate environments has been largely neglected. Approximately 260 species and morphotypes of benthic foraminifera were identified from 12 piston core tops and grab samples collected along two traverses 25 km apart across the northern windward margin of Little Bahama Bank at depths of 275-1,135 m. Certain species and operational taxonomic groups of benthic foraminifera correspond to major near-surface sedimentary facies of the windward margin of Little Bahama Bank and serve as reliable depth indicators. Globocassidulina subglobosa, Cibicides rugosus, and Cibicides wuellerstorfi are all reliable depth indicators, being most abundant at depths >1,000 m, and are found in lower slope periplatform aprons, which are primarily comprised of sediment gravity flows. Reef-dwelling peneroplids and soritids (suborder Miliolina) and rotaliines (suborder Rotaliina) are most abundant at depths <300 m, reflecting downslope bottom transport in proximity to bank-margin reefs. Small miliolines, rosalinids, and discorbids are abundant in periplatform ooze at depths <300 m and are winnowed from the carbonate platform. Increased variation in assemblage diversity below 900 m reflects mixing of shallow- and deep-water species by sediment gravity flows.


Sign in / Sign up

Export Citation Format

Share Document