MODELS OF WWER-1000 NUCLEAR REACTOR WITH DIVISION INTO ZONES ON VERTICAL AXIS FOR INFORMATION TECHNOLOGY OF CONTROL
Mathematical models of the WWER-1000 nuclear power reactor have been developed with division into zones along the vertical axis in the form of nonlinear systems of differential equations with dimensionless relative state variables. Models in a given number of zones along the vertical axis represent neutron kinetics, gradual heat release, thermal processes in fuel, cladding and coolant, changes in the concentration of iodine, xenon and boron. The parameters of mathematical models have been calculated based on the design and technological parameters of the V-320 series nuclear reactor. A general model of the reactor as a control object with division into zones along the vertical axis, as well as models with control of absorbing rods and boric acid, are obtained. Integration of the obtained systems of differential equations for given initial conditions allows one to obtain changes in all state variables in the reactor zones along the vertical axis. In particular, from the change in power in the zones along the vertical axis, the axial offset is calculated as the relative value of the difference between the powers of the upper and lower halves of the reactor core. The developed reactor models with dimensionless relative state variables use a minimum number of calculations, allow calculating the change in the axial offset, and are included in the information technology for controlling the power units of nuclear power plants to optimize the maneuvering modes of the WWER-1000 V-320 series reactor.