scholarly journals Data Analytics to Examine Trending Topics for Indonesian Election 2019

2019 ◽  
Vol 4 (2) ◽  
pp. 235
Author(s):  
Firman Arifin ◽  
Budi Nur Iman ◽  
Budi Nur Iman ◽  
Elly Purwantini ◽  
Elly Purwantini ◽  
...  

Understanding public interest and opinion are necessary tasks in high intense political competition. Utilizing big data analytics from social media provide an important source of information that candidates can utilize, manage and even engage them in targeted political campaigning agenda. One of the source in big data is social media’s interactions. Social media empowers public to participate proactivelyin the campaigning activities. This paper examines trends gathered from data analytics of two contenders’ group for Indonesian Election in 2019. It tracks the recent patterns of people engagement via social media analytic specifically Twitter. The study developed the analysis into the proposed model based on their trends and patterns.

2021 ◽  
pp. 074391562199967
Author(s):  
Raffaello Rossi ◽  
Agnes Nairn ◽  
Josh Smith ◽  
Christopher Inskip

The internet raises substantial challenges for policy makers in regulating gambling harm. The proliferation of gambling advertising on Twitter is one such challenge. However, the sheer scale renders it extremely hard to investigate using conventional techniques. In this paper the authors present three UK Twitter gambling advertising studies using both Big Data analytics and manual content analysis to explore the volume and content of gambling adverts, the age and engagement of followers, and compliance with UK advertising regulations. They analyse 890k organic adverts from 417 accounts along with data on 620k followers and 457k engagements (replies and retweets). They find that around 41,000 UK children follow Twitter gambling accounts, and that two-thirds of gambling advertising Tweets fail to fully comply with regulations. Adverts for eSports gambling are markedly different from those for traditional gambling (e.g. on soccer, casinos and lotteries) and appear to have strong appeal for children, with 28% of engagements with eSports gambling ads from under 16s. The authors make six policy recommendations: spotlight eSports gambling advertising; create new social-media-specific regulations; revise regulation on content appealing to children; use technology to block under-18s from seeing gambling ads; require ad-labelling of organic gambling Tweets; and deploy better enforcement.


Author(s):  
Joice K. Joseph ◽  
Karunakaran Akhil Dev ◽  
A.P. Pradeepkumar ◽  
Mahesh Mohan

Author(s):  
Mudassir Khan ◽  
Mohd Dilshad Ansari ◽  
Syed Yasmeen Shahdad

Author(s):  
Balamurugan Balusamy ◽  
Priya Jha ◽  
Tamizh Arasi ◽  
Malathi Velu

Big data analytics in recent years had developed lightning fast applications that deal with predictive analysis of huge volumes of data in domains of finance, health, weather, travel, marketing and more. Business analysts take their decisions using the statistical analysis of the available data pulled in from social media, user surveys, blogs and internet resources. Customer sentiment has to be taken into account for designing, launching and pricing a product to be inducted into the market and the emotions of the consumers changes and is influenced by several tangible and intangible factors. The possibility of using Big data analytics to present data in a quickly viewable format giving different perspectives of the same data is appreciated in the field of finance and health, where the advent of decision support system is possible in all aspects of their working. Cognitive computing and artificial intelligence are making big data analytical algorithms to think more on their own, leading to come out with Big data agents with their own functionalities.


Author(s):  
Claudio Agostino Ardagna ◽  
Valerio Bellandi ◽  
Michele Bezzi ◽  
Paolo Ceravolo ◽  
Ernesto Damiani ◽  
...  

2019 ◽  
Author(s):  
Sheela Singh ◽  
Priyanka Arya ◽  
Alpna Patel ◽  
Arvind Kumar Tiwari

2020 ◽  
Vol 34 (28) ◽  
pp. 2050311
Author(s):  
Satvik Vats ◽  
B. B. Sagar

In Big data domain, platform dependency can alter the behavior of the business. It is because of the different kinds (Structured, Semi-structured and Unstructured) and characteristics of the data. By the traditional infrastructure, different kinds of data cannot be processed simultaneously due to their platform dependency for a particular task. Therefore, the responsibility of selecting suitable tools lies with the user. The variety of data generated by different sources requires the selection of suitable tools without human intervention. Further, these tools also face the limitation of recourses to deal with a large volume of data. This limitation of resources affects the performance of the tools in terms of execution time. Therefore, in this work, we proposed a model in which different data analytics tools share a common infrastructure to provide data independence and resource sharing environment, i.e. the proposed model shares common (Hybrid) Hadoop Distributed File System (HDFS) between three Name-Node (Master Node), three Data-Node and one Client-node, which works under the DeMilitarized zone (DMZ). To realize this model, we have implemented Mahout, R-Hadoop and Splunk sharing a common HDFS. Further using our model, we run [Formula: see text]-means clustering, Naïve Bayes and recommender algorithms on three different datasets, movie rating, newsgroup, and Spam SMS dataset, representing structured, semi-structured and unstructured, respectively. Our model selected the appropriate tool, e.g. Mahout to run on the newsgroup dataset as other tools cannot run on this data. This shows that our model provides data independence. Further results of our proposed model are compared with the legacy (individual) model in terms of execution time and scalability. The improved performance of the proposed model establishes the hypothesis that our model overcomes the limitation of the resources of the legacy model.


Sign in / Sign up

Export Citation Format

Share Document