EXPONENTIATED HALF-LOGISTIC LOMAX DISTRIBUTION WITH PROPERTIES AND APPLICATION

2019 ◽  
Vol XVI (2) ◽  
pp. 1-11
Author(s):  
Farrukh Jamal ◽  
Hesham Mohammed Reyad ◽  
Soha Othman Ahmed ◽  
Muhammad Akbar Ali Shah ◽  
Emrah Altun

A new three-parameter continuous model called the exponentiated half-logistic Lomax distribution is introduced in this paper. Basic mathematical properties for the proposed model were investigated which include raw and incomplete moments, skewness, kurtosis, generating functions, Rényi entropy, Lorenz, Bonferroni and Zenga curves, probability weighted moment, stress strength model, order statistics, and record statistics. The model parameters were estimated by using the maximum likelihood criterion and the behaviours of these estimates were examined by conducting a simulation study. The applicability of the new model is illustrated by applying it on a real data set.

Author(s):  
Muhammad Ahsan ul Haq ◽  
Ahmed Z. Afify ◽  
Hazem Al- Mofleh ◽  
Rana Muhammad Usman ◽  
Mohammed Alqawba ◽  
...  

We study a new continuous distribution called the Marshall-Olkin modified Burr III distribution. The density function of the proposed model can be expressed as a mixture of modified Burr III densities. A comprehensive account of its mathematical properties is derived. The model parameters are estimated by the method of maximum likelihood. The usefulness of the derived model is illustrated over other distributions using a real data set.


2017 ◽  
Vol 2 (6) ◽  
pp. 7-13
Author(s):  
Zubair Ahmad ◽  
Zawar Hussain

The present paper is devoted to introduce a four-parameter modification of new flexible Weibull distribution. The proposed model will be called modified new flexible Weibull distribution, able to model lifetime phenomena with increasing or bathtub-shaped failure rates. Some of its mathematical properties will be studied. The approach of maximum likelihood will be used for estimating the model parameters. A brief mathematical description for the reliability function will also be discussed. The usefulness of the proposed distribution will be illustrated by an application to a real data set.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
K. S. Sultan ◽  
A. S. Al-Moisheer

We discuss the two-component mixture of the inverse Weibull and lognormal distributions (MIWLND) as a lifetime model. First, we discuss the properties of the proposed model including the reliability and hazard functions. Next, we discuss the estimation of model parameters by using the maximum likelihood method (MLEs). We also derive expressions for the elements of the Fisher information matrix. Next, we demonstrate the usefulness of the proposed model by fitting it to a real data set. Finally, we draw some concluding remarks.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Marcelo Bourguignon ◽  
Indranil Ghosh ◽  
Gauss M. Cordeiro

The transmuted family of distributions has been receiving increased attention over the last few years. For a baselineGdistribution, we derive a simple representation for the transmuted-Gfamily density function as a linear mixture of theGand exponentiated-Gdensities. We investigate the asymptotes and shapes and obtain explicit expressions for the ordinary and incomplete moments, quantile and generating functions, mean deviations, Rényi and Shannon entropies, and order statistics and their moments. We estimate the model parameters of the family by the method of maximum likelihood. We prove empirically the flexibility of the proposed model by means of an application to a real data set.


2020 ◽  
Vol 8 (1) ◽  
pp. 17-35
Author(s):  
Hamid Esmaeili ◽  
Fazlollah Lak ◽  
Emrah Altun

This paper investigates general mathematical properties of a new generator of continuous distributions with two extra parameter called the Ristic-Balakrishnan odd log-logistic family of distributions. We present some special models and investigate the asymptotes. The new density function can be expressed as a linear combination of exponentiated densities based on the same baseline distribution. Explicit expressions for the ordinary and incomplete moments, generating functions and order statistics, which hold for any baseline model, are determined. Further, we discuss the estimation of the model parameters by maximum likelihood and present a simulation study based on maximum likelihood estimation. A regression model based on proposed model was introduced. Finally, three applications to real data were provided to illustrate the potentiality of the family of distributions.


2019 ◽  
Vol 16 (4) ◽  
pp. 0937
Author(s):  
Saad Et al.

In this paper, for the first time we introduce a new four-parameter model called the Gumbel- Pareto distribution by using the T-X method. We obtain some of its mathematical properties. Some structural properties of the new distribution are studied. The method of maximum likelihood is used for estimating the model parameters. Numerical illustration and an application to a real data set are given to show the flexibility and potentiality of the new model.


2017 ◽  
Vol 5 (1) ◽  
pp. 36
Author(s):  
Hesham Reyad ◽  
Soha A. Othman ◽  
Adil M Younis ◽  
Ahmed M. Hashish

We introduce a new four parameter continuous model, called the Kumaraswamy compound Rayleigh (KwCR) distribution that extends the compound Rayleigh distribution. We study some mathematical properties of this distribution such as; mean, variance, coefficient of variation, quantile function, median, ordinary and incomplete moments, skewness, kurtosis, moment and probability generating functions, reliability analysis, Lorenz, Bonferroni and Zenga curves, Rényi of entropy, order statistics and record statistics. We consider the methods of moments and maximum likelihood for estimating the model parameters.


Author(s):  
Innocent Boyle Eraikhuemen ◽  
Julian Ibezimako Mbegbu ◽  
Friday Ewere

In this paper, we propose Complementary Kumaraswamy Weibull Power Series (CKWPS) Distributions. The method is obtained by compounding the Kumaraswamy-G distribution and Power Series distribution on a latent complementary distance problem base. The mathematical properties of the proposed class of distribution are studied. The method of Maximum Likelihood Estimation is used for obtaining the estimates of the model parameters. A member of the family is investigated in detail. Finally an application of the proposed class is illustrated using a real data set.


Author(s):  
Farrukh Jamal ◽  
Hesham Mohammed Reyad ◽  
Muhammad Arslan Nasir ◽  
Christophe Chesneau ◽  
Jamal Abdul Nasir ◽  
...  

A new four-parameter lifetime distribution (called the Topp Leone Weibull-Lomax distribution) is proposed in this paper. Different mathematical properties of the proposed distribution were studied which include quantile function, ordinary and incomplete moments, probability weighted moment, conditional moments, order statistics, stochastic ordering, and stress-strength reliability parameter. The regression model and the residual analysis for the proposed model were also carried out. The model parameters were estimated by using the maximum likelihood criterion and the behaviour of these estimated parameters were examined by conducting a simulation study. The importance and flexibility of the proposed distribution have been proved empirically by using four separate data sets.


2018 ◽  
Vol 55 (4) ◽  
pp. 498-522
Author(s):  
Morad Alizadeh ◽  
Mahdi Rasekhi ◽  
Haitham M. Yousof ◽  
Thiago G. Ramires ◽  
G. G. Hamedani

In this article, a new four-parameter model is introduced which can be used in mod- eling survival data and fatigue life studies. Its failure rate function can be increasing, decreasing, upside down and bathtub-shaped depending on its parameters. We derive explicit expressions for some of its statistical and mathematical quantities. Some useful characterizations are presented. Maximum likelihood method is used to estimate the model parameters. The censored maximum likelihood estimation is presented in the general case of the multi-censored data. We demonstrate empirically the importance and exibility of the new model in modeling a real data set.


Sign in / Sign up

Export Citation Format

Share Document