scholarly journals Acceleration of boundary element calculations for closed domain using nonlinear form functions and CUDA technology

Doklady BGUIR ◽  
2021 ◽  
Vol 19 (3) ◽  
pp. 14-21
Author(s):  
S. S. Sherbakov ◽  
M. M. Polestchuk

The evolution of computer technologies, as a hardware and a software parts, allows to attain fast and accurate  solutions  to  many  applied  problems  in  scientific  areas.  Acceleration  of  calculations  is  broadly  used technic that is basically implemented by multithreading and multicore processors. NVidia CUDA technology or simply CUDA opens a way to efficient acceleration of boundary elements method (BEM), that includes many independent stages. The main goal of the paper is implementation and acceleration of indirect boundary element method using three form functions. Calculation of the potentialdistribution inside a closed boundary under the action of the defined boundary condition is considered. In order to accelerate corresponding calculations, they were parallelized at the graphic accelerator using NVidia CUDA technology. The dependences of acceleration of parallel  computations  as  compared  with  sequential  ones  were explored  for  different  numbers  of  boundary elements  and  computational  nodes.  A  significant  acceleration  (up  to  52  times)  calculation  of  the  potential distribution  without  loss  in  accuracy  is  shown.  Acceleration  of up  to  22  times  was  achieved  in  calculation of mutual  influence  matrix  for  boundary  elements.  Using  CUDA  technology  allows  to  attain  significant acceleration without loss in accuracy and convergence. So application of CUDA is a good way to parallelizing BEM.  Application  of  developed  approach  allows  to  solve  problems in  different  areas  of  physics  such as acoustics, hydromechanics, electrodynamics, mechanics of solids and many other areas, efficiently.

2017 ◽  
Vol 4 (56) ◽  
pp. 107-114
Author(s):  
A. D. Kolosov ◽  
◽  
V. O. Gorovoy ◽  
V. V. Kondratiev ◽  
◽  
...  

Author(s):  
L. Gaul

Abstract Calculation of the dynamic response of sensitive structures like foundations for vibrating machinery requires to take the interaction with subsoil into account. Structures and soil are discretized by boundary elements and coupled by a substructure technique. Viscoelastic constitutive equations contain fractional time derivatives. Surface waves generated by machine foundations and diffracted by embedded structures and soil inhomogeneities are analyzed by conventional and optoelectronic experimental techniques and calculated by the boundary element method (BEM).


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 157773-157780
Author(s):  
Artur Pala ◽  
Marek Machaczek

2007 ◽  
Vol 27 (13) ◽  
pp. 4796-4806 ◽  
Author(s):  
Rashmi U. Pathak ◽  
Nandini Rangaraj ◽  
Satish Kallappagoudar ◽  
Krishnaveni Mishra ◽  
Rakesh K. Mishra

ABSTRACT Chromatin domain boundary elements demarcate independently regulated domains of eukaryotic genomes. While a few such boundary sequences have been studied in detail, only a small number of proteins that interact with them have been identified. One such protein is the boundary element-associated factor (BEAF), which binds to the scs′ boundary element of Drosophila melanogaster. It is not clear, however, how boundary elements function. In this report we show that BEAF is associated with the nuclear matrix and map the domain required for matrix association to the middle region of the protein. This region contains a predicted coiled-coil domain with several potential sites for posttranslational modification. We demonstrate that the DNA sequences that bind to BEAF in vivo are also associated with the nuclear matrix and colocalize with BEAF. These results suggest that boundary elements may function by tethering chromatin to nuclear architectural components and thereby provide a structural basis for compartmentalization of the genome into functionally independent domains.


Doklady BGUIR ◽  
2021 ◽  
Vol 19 (1) ◽  
pp. 21-29
Author(s):  
D. E. Marmysh ◽  
U. I. Babaed

The purpose of the work, the results of which are presented within the framework of the article, was to develop algorithms for calculating the damage to a solid or a system of solids based on the Monte Carlo method and the analytical boundary element method. The analytical boundary element method was used to calculate and analyze the stress-strain state of a solid under the distributed surface load. Based on indicators of the stress state, the algorithms for numerically assessing the dangerous volume and integral damage using the Monte Carlo methods, have been developed. Based on the pattern of distribution of stress fields, the technique of determining the area for randomly generating integration nodes is described. General recommendations have been developed for determining the boundaries of a subdomain containing a dangerous volume. Based on the features of the Monte Carlo methods, a numerical assessment of the indicators of damage of continuous media for a different number of integration nodes was carried out. Methods and algorithms were used to calculate the dangerous volume and integral damage in the plane and spatial cases for the two most common laws of the distribution of surface forces in the contact mechanics of solids: in case of contact interaction of two non-conformal bodies (Hertz problem) and when a non deformable rigid stamp is pressed into elastic half-plane or half-space. The scientific novelty of the work is to combine analytical and numerical approaches for the quantitative assessment of damage indicators of the power system. As a result the quantitative indicators of the dangerous volume (in the flat case - the dangerous area) and the integral damage of the half-plane and half-space related to the value of the applied load are obtained.


Sign in / Sign up

Export Citation Format

Share Document