scholarly journals Enhancement of the Surface Plasmon Polaritons Excitation Efficiency

Author(s):  
Riyadh D. Mansoor ◽  
Alistair Duffy

Surface Plasmon Polaritons (SPPs) are propagating excitations that arise from the coupling of light with collective oscillations of electrons on the metal surface. This paper describes a new approach for increasing the SPP excitation efficiency. Using a computational electromagnetics approach, potential techniques for reducing incident power reflectivity were investigated using the Kretschmann configuration. The effects of different parameters such as incident angle, metal thickness, and dielectric permittivity were tested and optimized to improve the efficiency of SPPs by minimizing reflectivity. An 30% increase in efficiency was obtained. In addition, the optical response of a thin metal film on a glass substrate was numerically examined in terms of SPP excitation. The dependency of the response on the incident angle, materials, and dimensions were demonstrated. This paper describes how an improvement in efficiency can improve the effectiveness of bio-sensing applications through the proper choice of layer dimensions and material permittivity of different layers. The relationship between incident angle and reflectivity for different permittivities can be used for bio-sensing applications such as blood glucose biosensors, etc.

2019 ◽  
Vol 5 (1) ◽  
pp. 7-11
Author(s):  
Maksim O. Usik ◽  
Igor V. Bychkov ◽  
Vladimir G. Shavrov ◽  
Dmitry A. Kuzmin

Abstract In the present work we theoretically investigated the excitation of surface plasmon-polaritons (SPPs) in deformed graphene by attenuated total reflection method. We considered the Otto geometry for SPPs excitation in graphene. Efficiency of SPPs excitation strongly depends on the SPPs propagation direction. The frequency and the incident angle of the most effective excitation of SPPs strongly depend on the polarization of the incident light. Our results may open up the new possibilities for strain-induced molding flow of light at nanoscales.


2021 ◽  
Vol 56 ◽  
pp. 71-82
Author(s):  
I. Z. Indutnyi ◽  

Detailed studies of the efficiency of excitation of surface plasmon-polaritons (SPP) on aluminum gratings with a period a = 694 nm, which exceeds the incident wavelength of λ = 632,8 nm, have been carried out. The gratings relief depth (h) range was 6–135 nm. Research samples were formed on As40S30Se30 chalcogenide photoresist films using interference lithography and vacuum thermal deposition of an opaque aluminum layer about 80 nm thick. An atomic force microscope was used to determine the groove profile shape and the grating relief depth. The study of the SPP excitation features was carried out on a stand mounted on the basis of a G5M goniometer and an FS-5 Fedorov stage by measuring the angular dependences of the intensity of specularly reflected and diffracted p-polarized radiation of He-Ne laser. When determining the SPP excitation efficiency, the resonance values of both specular reflection and reflection in the -1st DO were taken into account. It was found that the dependence of the integral plasmon absorption on the grating modulation depth (h/a) is described by a somewhat asymmetric curve with a wide maximum, the position of which corresponds to an h/a value of about 0.07 and a half-width of about 0.123. This allows to excite SPP with an efficiency ≥ 80% of the maximum value on the gratings with the 0,05-0,105 h/a range. The half-width of the plasmon minimum of the reflection in the -1st DO is less than in the specular reflection, which can increase sensitivity of sensor devices when registering the shift of the minimum from angular measurements. The dependence of the half-width of the SPP reflection minima on the grating modulation depth is close to quadratic. In the investigated h/a range (from 0.009 to 0.194), the maximum dynamic range of the reflection coefficient is two orders of magnitude and is achieved in specular reflection for gratings with h/a ≈ 0.075.


2020 ◽  
Vol 44 (5) ◽  
pp. 852-856
Author(s):  
B.A. Knyazev ◽  
V.S. Pavelyev

The feasibility of generating surface plasmon polaritons carrying orbital angular momentum ("vortex plasmons") on cylindrical conductors by an end-fire coupling technique in the spectral range from 8.5 to 141 μm (~ 2-40 THz) is considered. The front face of the cylinder is illuminated by Bessel beams formed using binary spiral phase axicons, or annual vortex beams formed in the focal plane of an additional lens. Graphs are constructed that reveal the relationship between the waveguide parameters (conductor diameter, which is equal to the diameter of the illuminating beam, and the “twist” angle of the plasmon) and the axicon parameters (the ratio of the axicon period to the radiation wavelength) for the above wavelengths and topological charges of the beams ranging from 1 to 9. The results obtained indicate the possibility of conducting experiments in the long-wavelength range for modeling a plasmon multiplex communication channel.


2018 ◽  
Vol 26 (8) ◽  
pp. 9772 ◽  
Author(s):  
Peizhen Qiu ◽  
Dawei Zhang ◽  
Ming Jing ◽  
Taiguo Lu ◽  
Binbin Yu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document