scholarly journals Perovskite Solar Cell design using Tin Halide and Cuprous Thiocyanate for Enhanced Efficiency

Utilization of Tin Halide as an absorber in Perovskite solar cells is immensely recognized as a substitute of lead halide absorber because of lead material’s toxicity. Also, Tin halide based Perovskites possess a potential for higher quantum efficiency because of their enhanced light absorption capability due to the wide-ranging absorption spectrum in the visible region with a comparatively lower bandgap of 1.3 eV than lead-based Perovskites. In the present work, glass/ transparent conductive oxide (TCO)/ titanium dioxide (buffer)/ tin halide Perovskite (Absorber)/ cuprous thiocyanate (HTM)/ Metal back solar cell structure has been designed and simulated by SCAPS software which yields Power Conversion Efficiency (PCE) of 28.32% and Fill Factor (FF) of 85.17%. The effect of total defect density, thickness, Valance Band Effective Density of States (VBEDS) and Conduction Band Effective Density of States (CBEDS) for an absorber layer has been analyzed. It has been observed that VBEDS variation has achieved PCE and FF to a significant extent i.e. up to 32.47% PCE and 85.86% FF

2015 ◽  
Vol 793 ◽  
pp. 435-439 ◽  
Author(s):  
M.A. Humayun ◽  
M.A. Rashid ◽  
F. Malek ◽  
S.B. Yaakob ◽  
A.Z. Abdullah ◽  
...  

This paper presents the improvement of intrinsic carrier concentrations in the active layer of solar cell structure using Indium Nitride quantum dot as the active layer material. We have analyzed effective density of states in conduction band and valance band of the solar cell numerically using Si, Ge and InN quantum dot in the active layer of the solar cell structure in order to improve the intrinsic carrier concentration within the active layer of the solar cell. Then obtained numerical results were compared. From the comparison results it has been revealed that the application of InN quantum dot in the active layer of the device structure improves the effective density of states both in conduction band and in the valance band. Consiquently the intrinsic carrier concentration has been improved significently by using InN quantum dot in the solart cell structure.


Author(s):  
Gagandeep Kundu ◽  
Mukhtiyar Singh ◽  
Ramesh Kumar ◽  
Ramesh Kumar ◽  
Vinamrita Singh ◽  
...  

Abstract Simulation studies have been carried out for n-i-p perovskite solar cell (PSC) structure i.e. ITO/SnO2/CH3NH3PbI3/CuInS2/Au. We have considered this cell as our primary structure and is simulated using Solar Cell Capacitance Simulator (SCAPS-1D) software. Here, the CuInS2 quantum dot acts as an inorganic hole transporting layer. Further, the use of the CuInS2 quantum dot in PSCs has been explored by simulating twenty different cell structures. These perovskite solar cells are based on recently used absorber layers, i.e., MASnI3, FAPbI3, and (FAPbI3)0.97(MAPbBr1.5Cl1.5)0.03, and electron transporting layers, i.e., SnO2, TiO2, ZnO, C60, and IGZO. The performance of all structures has been optimized by varying the thickness of the absorber layers and ETLs. The cell structure, ITO/SnO2/CH3NH3SnI3/CuInS2/Au, has been found to exhibit highest power conversion efficiency of 21.79% as compared to other cells. Investigations have also been carried out to analyze the effect of defect density in the absorber layer and the interface of the cell structure. In addition, the cell performance has been ascertained by examining the impact of operating temperature, metal contact work function and that of resistance in series as well as in parallel. The simulation results of our primary cell structure are found to be in good agreement with the recent experimental study.


2018 ◽  
Vol 2 (11) ◽  
pp. 2429-2434 ◽  
Author(s):  
Jorge Avila ◽  
Lidon Gil-Escrig ◽  
Pablo P. Boix ◽  
Michele Sessolo ◽  
Steve Albrecht ◽  
...  

A generic solar cell structure using undoped charge extraction layer is presented, that lead to efficient and rather stable solar cells.


2021 ◽  
Vol 53 (1) ◽  
Author(s):  
Agageldi Muhammetgulyyev ◽  
Yeşim Yalçın ◽  
Furkan Kuruoğlu ◽  
Erman Çokduygulular ◽  
Barış Kınacı ◽  
...  

2017 ◽  
Vol 60 (5) ◽  
pp. 407-414 ◽  
Author(s):  
Mengni Xue ◽  
Hai Zhou ◽  
Yang Xu ◽  
Jun Mei ◽  
Lu Yang ◽  
...  

2012 ◽  
Vol 112 (11) ◽  
pp. 114910 ◽  
Author(s):  
Muhammad Monirul Islam ◽  
Naoya Miyashita ◽  
Nazmul Ahsan ◽  
Takeaki Sakurai ◽  
Katsuhiro Akimoto ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document