scholarly journals Semi-Equalizing Load in Multi-hop Wireless Networks

Scheduling transmissions in a well-organized and fair manner in multi hop wireless network [MWN] is very crucial and challenging .For semi equalizing the load a distributed node scheduling algorithm is used through slot reallocation based on local information swap . The algorithm helps to find the delay or shortest delivery time is achieved when the load is semi-equalized throughout the network. We have simulated the Local voting algorithm and found that the system converges asymptotically toward the optimal schedule. In this paper we propose a congestion free scheme to schedule the node transmissions conflict free. The proposed algorithm achieves better performance than the other distributed algorithms in terms of fairness, average delay, and maximum delay in simulation results.

1995 ◽  
Vol 05 (04) ◽  
pp. 635-646 ◽  
Author(s):  
MICHAEL A. PALIS ◽  
JING-CHIOU LIOU ◽  
SANGUTHEVAR RAJASEKARAN ◽  
SUNIL SHENDE ◽  
DAVID S.L. WEI

The scheduling problem for dynamic tree-structured task graphs is studied and is shown to be inherently more difficult than the static case. It is shown that any online scheduling algorithm, deterministic or randomized, has competitive ratio Ω((1/g)/ log d(1/g)) for trees with granularity g and degree at most d. On the other hand, it is known that static trees with arbitrary granularity can be scheduled to within twice the optimal schedule. It is also shown that the lower bound is tight: there is a deterministic online tree scheduling algorithm that has competitive ratio O((1/g)/ log d(1/g)). Thus, randomization does not help.


2010 ◽  
Vol 20-23 ◽  
pp. 1096-1102
Author(s):  
Jen Hui Chen ◽  
Chih Chieh Wang ◽  
Ying Chuan Hsiao

This paper proposes a fast macrocell label switching mechanism (MLSM) in the MPLS-WiMAX networks. The mobil station (MS) communicates with each other within macrocell, e.g., MSA in the cellA communicates with MSB in the other cell, and can be switched via the media access control (MAC) layer without involving the network layer. The average access delay of request from MSs is studied and analyzed in this paper. Finally, simulation results show that the purposed MLSM operates effectively and efficiently in terms of network throughput, average delay, and resource utilization.


2014 ◽  
Vol 513-517 ◽  
pp. 1160-1164
Author(s):  
Shu Juan Huang ◽  
Yi An Zhu

Nowadays, there are two approach in mixed-criticality scheduling. One is reservations-based approach such as EDF-VD(Earliest Deadline First-Virtual Deadline) and the Other is priority-based scheduling such as OCBP(Own Criticality Based Priority). This paper compared the two mixed-criticality scheduling algorithm from three aspects. The simulation results show that EDF-VD is better than OCBP in completed tasks and the system utilization, but in unmissed deadline ratio the later owns the better.


Author(s):  
Supriya Raheja

Background: The extension of CPU schedulers with fuzzy has been ascertained better because of its unique capability of handling imprecise information. Though, other generalized forms of fuzzy can be used which can further extend the performance of the scheduler. Objectives: This paper introduces a novel approach to design an intuitionistic fuzzy inference system for CPU scheduler. Methods: The proposed inference system is implemented with a priority scheduler. The proposed scheduler has the ability to dynamically handle the impreciseness of both priority and estimated execution time. It also makes the system adaptive based on the continuous feedback. The proposed scheduler is also capable enough to schedule the tasks according to dynamically generated priority. To demonstrate the performance of proposed scheduler, a simulation environment has been implemented and the performance of proposed scheduler is compared with the other three baseline schedulers (conventional priority scheduler, fuzzy based priority scheduler and vague based priority scheduler). Results: Proposed scheduler is also compared with the shortest job first CPU scheduler as it is known to be an optimized solution for the schedulers. Conclusion: Simulation results prove the effectiveness and efficiency of intuitionistic fuzzy based priority scheduler. Moreover, it provides optimised results as its results are comparable to the results of shortest job first.


Author(s):  
Satyasrikanth Palle ◽  
Shivashankar

Objective: The demand for Cellular based multimedia services is growing day by day, in order to fulfill such demand the present day cellular networks needs to be upgraded to support excessive capacity calls along with high data accessibility. Analysis of traffic and huge network size could become very challenging issue for the network operators for scheduling the available bandwidth between different users. In the proposed work a novel QoS Aware Multi Path scheduling algorithm for smooth CAC in wireless mobile networks. The performance of the proposed algorithm is assessed and compared with existing scheduling algorithms. The simulation results show that the proposed algorithm outperforms existing CAC algorithms in terms of throughput and delay. The CAC algorithm with scheduling increases end-to-end throughput and decreases end-to-end delay. Methods: The key idea to implement the proposed research work is to adopt spatial reuse concept of wireless sensor networks to mobile cellular networks. Spatial reusability enhances channel reuse when the node pairs are far away and distant. When Src and node b are communicating with each other, the other nodes in the discovered path should be idle without utilizing the channel. Instead the other nodes are able to communicate parallelly the end-to-end throughput can be improved with acceptable delay. Incorporating link scheduling algorithms to this key concept further enhances the end-to-end throughput with in the turnaround time. So, in this research work we have applied spatial reuse concept along with link scheduling algorithm to enhance end-to-end throughput with in turnaround time. The proposed algorithm not only ensures that a connection gets the required bandwidth at each mobile node on its way by scheduling required slots to meet the QoS requirements. By considering the bandwidth requirement of the mobile connections, the CAC module at the BS not only considers the bandwidth requirement but also conforming the constrains of system dealy and jitter are met. Result: To verify the feasibility and effectiveness of our proposed work, with respect to scheduling the simulation results clearly shows the throughput improvement with Call Admission Control. The number of dropped calls is significantly less and successful calls are more with CAC. The percentage of dropped calls is reduced by 9 % and successful calls are improved by 91%. The simulation is also conducted on time constraint and ratio of dropped calls are shown. The total time taken to forward the packets and the ration of dropped calls is less when compared to non CAC. On a whole the CAC with scheduling algorithms out performs existing scheduling algorithms. Conclusion: In this research work we have proposed a novel QoS aware scheduling algorithm that provides QoS in Wireless Cellular Networks using Call Admission Control (CAC). The simulation results show that the end-to-end throughput has been increased by 91% when CAC is used. The proposed algorithm is also compared with existing link scheduling algorithms. The results reveal that CAC with scheduling algorithm can be used in Mobile Cellular Networks in order to reduce packet drop ratio. The algorithm is also used to send the packets within acceptable delay.


Author(s):  
Ge Weiqing ◽  
Cui Yanru

Background: In order to make up for the shortcomings of the traditional algorithm, Min-Min and Max-Min algorithm are combined on the basis of the traditional genetic algorithm. Methods: In this paper, a new cloud computing task scheduling algorithm is proposed, which introduces Min-Min and Max-Min algorithm to generate initialization population, and selects task completion time and load balancing as double fitness functions, which improves the quality of initialization population, algorithm search ability and convergence speed. Results: The simulation results show that the algorithm is superior to the traditional genetic algorithm and is an effective cloud computing task scheduling algorithm. Conclusion: Finally, this paper proposes the possibility of the fusion of the two quadratively improved algorithms and completes the preliminary fusion of the algorithm, but the simulation results of the new algorithm are not ideal and need to be further studied.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1400
Author(s):  
Muhammad Adnan ◽  
Jawaid Iqbal ◽  
Abdul Waheed ◽  
Noor Ul Amin ◽  
Mahdi Zareei ◽  
...  

Modern vehicles are equipped with various sensors, onboard units, and devices such as Application Unit (AU) that support routing and communication. In VANETs, traffic management and Quality of Service (QoS) are the main research dimensions to be considered while designing VANETs architectures. To cope with the issues of QoS faced by the VANETs, we design an efficient SDN-based architecture where we focus on the QoS of VANETs. In this paper, QoS is achieved by a priority-based scheduling algorithm in which we prioritize traffic flow messages in the safety queue and non-safety queue. In the safety queue, the messages are prioritized based on deadline and size using the New Deadline and Size of data method (NDS) with constrained location and deadline. In contrast, the non-safety queue is prioritized based on First Come First Serve (FCFS) method. For the simulation of our proposed scheduling algorithm, we use a well-known cloud computing framework CloudSim toolkit. The simulation results of safety messages show better performance than non-safety messages in terms of execution time.


2014 ◽  
Vol 519-520 ◽  
pp. 108-113 ◽  
Author(s):  
Jun Chen ◽  
Bo Li ◽  
Er Fei Wang

This paper studies resource reservation mechanisms in the strict parallel computing grid,and proposed to support the parallel strict resource reservation request scheduling model and algorithms, FCFS and EASY backfill analysis of two important parallel scheduling algorithm, given four parallel scheduling algorithms supporting resource reservation. Simulation results of four algorithms of resource utilization, job bounded slowdown factor and the success rate of Advanced Reservation (AR) jobs were studied. The results show that the EASY backfill + firstfit algorithm can ensure QoS of AR jobs while taking into account the performance of good non-AR jobs.


2007 ◽  
Vol 39 (9) ◽  
pp. 2248-2270 ◽  
Author(s):  
Wei-Bin Zhang

The author develops a multiregional growth model with endogenous amenity and capital accumulation for any number of regions. The simulation results demonstrate that the national dynamics have a unique equilibrium. Comparative statics analysis shows that, if environmental improvement occurs in the technologically advanced (less advanced) region, the national output rises (falls). As a region improves its technology, the other two regions' aggregated output levels fall—not only in relative, but also in absolute, terms. This implies that if any region has a high rate of technological change and the other regions remain technologically stationary, then economic activities will tend to be concentrated in the technologically advancing region. It is also shown that technological differences appear to play only a small role in accounting for spatial wage disparities and endowments.


2011 ◽  
Vol 474-476 ◽  
pp. 828-833
Author(s):  
Wen Jun Xu ◽  
Li Juan Sun ◽  
Jian Guo ◽  
Ru Chuan Wang

In order to reduce the average path length of the wireless sensor networks (WSNs) and save the energy, in this paper, the concept of the small world is introduced into the routing designs of WSNs. So a new small world routing protocol (SWRP) is proposed. By adding a few short cut links, which are confined to a fraction of the network diameter, we construct a small world network. Then the protocol finds paths through recurrent propagations of weak and strong links. The simulation results indicate that SWRP reduces the energy consumption effectively and the average delay of the data transmission, which leads to prolong the lifetime of both the nodes and the network.


Sign in / Sign up

Export Citation Format

Share Document