scholarly journals Strength Development of Pervious Concrete with various Aggregate/Cement Ratio

This paper evaluates the effect of aggregate/cement ratio on the strength development of pervious concrete. To evaluate this study, mixture proportions have been prepared by varying the aggregate/cement ratio and studying its compressive strength development. Four different aggregate cement ratios were chosen and its strength development at 7 days and 28 days is studied. It has been observed that lesser the aggregate/cement ratio greater the strength and vice versa

2020 ◽  
Vol 1 ◽  
Author(s):  
Mohammed A. Hefni

Abstract The use of natural pozzolans in concrete applications is gaining more attention because of the associated environmental, economic, and technical benefits. In this study, reference cemented mine backfill samples were prepared using Portland cement, and experimental samples were prepared by partially replacing Portland cement with 10 or 20 wt.% fly ash as a byproduct (artificial) pozzolan or pumice as a natural pozzolan. Samples were cured for 7, 14, and 28 days to investigate uniaxial compressive strength development. Backfill samples containing 10 wt.% pumice had almost a similar compressive strength as reference samples. There is strong potential for pumice to be used in cemented backfill to minimize costs, improve backfill properties, and promote the sustainability of the mining industry.


2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Bin Han ◽  
Shengyou Zhang ◽  
Wei Sun

This study investigated the influencing rules of curing temperature (5, 10, 16, and 20°C), cement ratio (8%, 10%, 12%, and 14%), and mass concentration (70%, 73%, 74%, and 75%) on the strength of backfill. In addition, a scanning electron microscope (SEM) is employed to analyze the microtopography of the backfill. Experimental results indicate that the uniaxial compressive strength (UCS) of the backfill decreases as the curing temperature diminishes; temperature substantially influences the earlier strength of backfill (it is much significant below 10°C). In addition, as the cement ratio rises, the critical point for the impact of temperature on strength gradually moves toward a low-temperature zone; in pace with the slurry mass concentration increase, the compressive strength of the backfill also rises and its rate of increase enlarges after going beyond the critical concentration. In case the curing temperature is lower than 10°C, the extent of hydration is also low inside the backfill. Through experiments, the critical concentration of slurry in the Jinying gold mine is determined as 73%, and the critical interval of the cement ratio ranged between 10% and 12%. Corresponding measures can be taken to increase the strength of backfill in the Jinying Gold Mine by 129.9%. As a result, backfill collapse is effectively controlled.


Sign in / Sign up

Export Citation Format

Share Document