scholarly journals Ultra Wideband Coplanar Waveguide Antenna with an Improved Gain using a Frequency Selective Surfaces (FSS)

In this article, an ultra-wideband FSS reflector has been proposed to enhance the gain of a CPW antenna for UWB applications. A CPW fed antenna having dimensions of 38mm×38mm×1.605mm and FSS unit cell having dimensions 14mm × 14mm × 1.605 mm are presented in the paper. A rectangular slot and stubs are interleaved at the outer edges of the patch for achieving desired characteristics of an ultra-wideband for the frequency range of 3.39 GHz to 12.9 GHz. Simulation results carried out using the CST microwave 2016 version in the time domain are presented for the proposed antenna. An FSS unit cell designed and simulated using periodic boundary conditions and floquet ports is presented. The combined setup of an array of FSS reflector behind the antenna has been simulated in the time domain. This set up shows an improved performance in terms of antenna’s gain. A maximum and minimum gain of 8.14 dB and 4.98 dB has been observed with the presence of FSS reflector behind the coplanar waveguide antenna. A significant improvement of 2.9 dB has been observed over the entire band of antenna’s operation

2015 ◽  
Vol 9 (2) ◽  
pp. 373-379 ◽  
Author(s):  
Sarthak Singhal ◽  
Ankit Pandey ◽  
Amit Kumar Singh

A coplanar waveguide (CPW)-fed circular-shaped fractal antenna with third iterative orthogonal elliptical slot for ultra-wideband applications is presented. The bandwidth is enhanced by using successive iterations of radiating patch, CPW feedline, and tapered ground plane. An impedance bandwidth of 2.9–20.6 GHz is achieved. The designed antenna has omnidirectional radiation patterns along with average peak realized gain of 3.5 dB over the entire frequency range of operation. A good agreement is observed between the simulated and experimental results. This antenna structure has the advantages of miniaturized size and wide bandwidth in comparison to previously reported fractal structures.


2015 ◽  
Vol 8 (2) ◽  
pp. 319-326 ◽  
Author(s):  
Ayman S. Al-Zayed ◽  
V.A. Shameena

A finite-ground coplanar waveguide (FGCPW)-fed compact ultra-wideband flag-shaped monopole antenna is presented. The antenna consists of a FGCPW-fed monopole asymmetrically loaded with a rectangle strip. The antenna has a compact size of 21.85 × 28 × 1.6 mm3. Parametric analysis is conducted to understand the effect of various parameters on the antenna performance. Simple design equations are presented to provide reliable initial design of the antenna if a different substrate is to be used. Constant gain and monopole-like radiation patterns are observed along the entire operating range from 3.1 to 12 GHz. Investigation of the time domain characteristics reveals that the proposed antenna exhibits excellent pulse handling capabilities.


Author(s):  
Akram El Hamdouni ◽  
Abdelali Tajmouati ◽  
Jamal Zbito ◽  
Abdelwahed Tribak ◽  
Mohamed Latrach

In this study an original Coplanar Waveguide (CPW) antenna has been achieved into simulation and manufacturing in order to be an important candidate for the Ultra-wideband applications. The area of the proposed structure is 34mm x 43mm operating in the frequency range 3.1 GHz – 10.6 GHz released as UWB by the Federal Communications Commission (FCC). To perform the design of the proposed CPW antenna two electromagnetic solvers has been adopted which are CST of Microwave Studio and ADS of Agilent. The radiating patch has been chosen circular with fractal geometry based on circular slots with different sizes. The dielectric substrate is an Epoxy FR4 with a Relative permittivity 4.4, a thickness 1.6 and a loss tangent 0.025. To valid the functionality of the antenna two parameters has been computed which are the coefficient of reflection and the radiation pattern and confirmed into measurement by using the Network Analyser and the anechoic chamber.


Micromachines ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1029
Author(s):  
Xue-Ping Li ◽  
Gang Xu ◽  
Chang-Jiao Duan ◽  
Ming-Rong Ma ◽  
Shui-E Shi ◽  
...  

A novel compact tapered-slot-fed antenna (TSA) with anti-spiral shape and lumped resistors is presented for ultra-wideband (UWB) applications. Unique coplanar waveguide (CPW) to coplanar strip (CPS) feeding structure and exponential slot are designed to ensure the continuous current propagation and good impedance matching. With a pair of anti-spiral-shaped structure loadings at the end of the antenna, the radiation performance in lower operating band can be enhanced obviously. The typical resistor loading technique is applied to improve the time domain characteristics and expand the bandwidth. The fabricated prototype of this proposed antenna with a size of 53 × 63.5 mm2 was measured to confirm simulated results. The proposed antenna has S11 less than −10 dB in the range of 1.2–9.8 GHz, and the group delay result is only 0.4 ns. These findings indicate the proposed antenna can be taken as a promising candidate in UWB communication field.


2019 ◽  
Vol 9 (15) ◽  
pp. 3157 ◽  
Author(s):  
O ◽  
Jin ◽  
Choi

In this paper, we propose a compact four-port coplanar antenna for cognitive radio applications. The proposed antenna consists of a coplanar waveguide (CPW)-fed ultra-wideband (UWB) antenna and three inner rectangular loop antennas. The dimensions of the proposed antenna are 42 mm × 50 mm × 0.8 mm. The UWB antenna is used for spectrum sensing and fully covers the UWB spectrum of 3.1–10.6 GHz. The three loop antennas cover the UWB frequency band partially for communication purposes. The first loop antenna for the low frequency range operates from 2.96 GHz to 5.38 GHz. The second loop antenna is in charge of the mid band from 5.31 GHz to 8.62 GHz. The third antenna operates from 8.48 GHz to 11.02 GHz, which is the high-frequency range. A high isolation level (greater than 17.3 dB) is realized among the UWB antenna and three loop antennas without applying any additional decoupling structures. The realized gains of the UWB antenna and three loop antennas are greater than 2.7 dBi and 1.38 dBi, respectively.


2018 ◽  
Vol 7 (2.16) ◽  
pp. 11
Author(s):  
Sanjeev Kumar ◽  
Ravi Kumar ◽  
Rajesh Kumar Vishwakarma

A microstrip antenna with a circular disc design and modified ground is proposed in this paper. Circular shapes of different size have been slotted out from the radiating patch for achieving extended ultra wideband (UWB) with GSM/Bluetooth bands with maximum bandwidth of 17.7 GHz (0.88-18.6 GHz). Further, characteristic of dual notch band is achieved, when a combination of T and L-shaped slots are etched into the circular disc and ground plane respectively. Change in length of slots is controlling the notch band characteristics. The proposed antenna has rejection bandwidth of 1.3-2.2 GHz (LTE band), 3.2-3.9 GHz (WiMAX band) and 5.2-6.1 GHz (WLAN band) respectively. It covers the frequency range of 0.88-18.5 GHz with the VSWR of less than 2. Also, an equivalent parallel resonant circuit has been demonstrated for band notched frequencies of the designed antenna. The gain achieved by the proposed antenna is 6.27 dBi. This antenna has been designed, investigated and fabricated for GSM, Bluetooth, UWB, X and Ku band applications. The stable gain including H & E-plane radiation pattern with good directivity and omnidirectional behavior is achieved by the proposed antenna. Measured bandwidths are 0.5 GHz, 0.8 GHz, 1.1 GHz and 11.7 GHz respectively. 


2021 ◽  
Vol 36 (6) ◽  
pp. 788-795
Author(s):  
Dalia Elsheakh ◽  
Osama Dardeer

This article presents a 2×1 CPW ultra wideband rectangular slot antenna array (UWB-RSAA) with a modified circular slot shape to support a high data rate for wireless communications applications. The proposed antenna array dimensions are 0.7λ×0.8λo×0.064λo at the resonant frequency 1.8 GHz. It is fabricated on Rogers RO4003 substrate and fed by using a coplanar waveguide (CPW). A graphene layer is added on one side of the substrate to realize frequency reconfigurability and improve the array gain. The proposed array acquires -10 dB impedance bandwidth of the RSAA that extends from 1.7 GHz to 2.6 GHz, from 3.2 to 3.8 GHz, and from 5.2 GHz to 7 GHz. The proposed array achieved a realized peak gain of 7.5 dBi at 6.5 GHz at 0 Volt bias with an average gain of 4.5 dBi over the operating band. When the graphene bias is increased to 20 Volt, the antenna bandwidth extends from 1 GHz to 4 GHz and from 5 to 7 GHz with a peak gain of 14 dBi at 3.5 GHz and an average gain of 7.5 dBi. The linearly polarized operation of the proposed array over the operating bands makes it suitable for short-range wireless communications .


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Bing Li ◽  
Jing-song Hong

Two novel dual band-notched ultra-wideband (UWB) printed monopole antennas with simple structure and small size are presented. The size of both antennas is25×25×0.8 mm3. The bandwidth of one of the proposed antenna can be from 2.7 GHz to 36.8 GHz, except the bandwidth of 3.2–3.9 GHz for WiMAX applications and 5.14–5.94 GHz for WLAN applications. The bandwidth of the other is ranging for 2.7 to 41.1 GHz, except the bandwidth of 3.2–3.9 GHz for WiMAX applications and 4.8–5.9 GHz for WLAN applications. Bandwidths of the antennas are about 512% and 455% wider than those of conventional band-notched UWB antennas, respectively. In addition, the time-domain characteristics of the two antennas are investigated to show the difference between both antennas.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Pichet Moeikham ◽  
Chatree Mahatthanajatuphat ◽  
Prayoot Akkaraekthalin

The limitation of the electromagnetic interferences (EMIs) caused by UWB radiating sources into WLAN/WiMAX communication systems operating in the frequency band located around 5.5 GHz requires the adoption of appropriate design features. To this purpose, a notch filter integrated into an UWB antenna, which is able to ensure a better electrical insulation between the two mentioned communication systems with respect to that already presented by the authors Moeikham et al. (2011), is proposed in this paper. The proposed filter, consisting in a rectangular slot including a quarter-wavelength strip integrated on the lower inner edge of the UWB radiating patch, is capable of reducing the energy emission in the frequency range between 5.1 and 5.75 GHz resulting in lower EMIs with sensible electronic equipments working in this frequency band. The antenna structure has no need to be tuned after inserting the rectangle slot with a quarter-wavelength strip. The proposed antenna has potential to minimize the EMIs at a frequency range from 5.1 to 5.75 GHz. The radiation patterns are given nearly omnidirectional in plane and likely bidirectional in plane at all frequencies by the proposed antenna. Therefore, this antenna is suitable to apply for various UWB applications.


Sensors ◽  
2020 ◽  
Vol 20 (15) ◽  
pp. 4302 ◽  
Author(s):  
Amir Haider ◽  
MuhibUr Rahman ◽  
Mahdi Naghshvarianjahromi ◽  
Hyung Seok Kim

This paper investigates the time-domain performance of a switchable filter impulse radio ultra-wideband (IR-UWB) antenna for microwave breast imaging applications. A miniaturized CPW-fed integrated filter antenna with switchable performance in the range of the Worldwide Interoperability for Microwave Access (WiMAX) and Wireless Local Area Network (WLAN) bands could operate well within a 3.0 to 11 GHz frequency range. The time-domain performance of the filter antenna was investigated in comparison to that of the designed reference wideband antenna. By comparing both antennas’ time-domain characteristics, it was seen that the switchable filter antenna had good time-domain resolution along with the frequency-domain operation. Additionally, the time-domain investigation revealed that the switchable filter wide-band antenna performed similarly to the reference wide band antenna. This antenna was also utilized for a tumor detection application, and it was seen that the switchable filter wide-band antenna could detect a miniaturized irregularly shaped tumor easily, which is quite promising. Such an antenna with a good time-domain resolution and tumor detection capability will be a good candidate and will find potential applications in microwave breast imaging.


Sign in / Sign up

Export Citation Format

Share Document