scholarly journals Machine Learning Housing Price Prediction in Petaling Jaya, Selangor, Malaysia

This paper demonstrates the utilization of machine learning algorithms in the prediction of housing selling prices on real dataset collected from the Petaling Jaya area, Selangor, Malaysia. To date, literature about research on machine learning prediction of housing selling price in Malaysia is scarce. This paper provides a brief review of the existing machine learning algorithms for the prediction problem and presents the characteristics of the collected datasets with different groups of feature selection. The findings indicate that using irrelevant features from the dataset can decrease the accuracy of the prediction models.

2021 ◽  
Author(s):  
Ravi Arkalgud ◽  
◽  
Andrew McDonald ◽  
Ross Brackenridge ◽  
◽  
...  

Automation is becoming an integral part of our daily lives as technology and techniques rapidly develop. Many automation workflows are now routinely being applied within the geoscience domain. The basic structure of automation and its success of modelling fundamentally hinges on the appropriate choice of parameters and speed of processing. The entire process demands that the data being fed into any machine learning model is essentially of good quality. The technological advances in well logging technology over decades have enabled the collection of vast amounts of data across wells and fields. This poses a major issue in automating petrophysical workflows. It necessitates to ensure that, the data being fed is appropriate and fit for purpose. The selection of features (logging curves) and parameters for machine learning algorithms has therefore become a topic at the forefront of related research. Inappropriate feature selections can lead erroneous results, reduced precision and have proved to be computationally expensive. Experienced Eye (EE) is a novel methodology, derived from Domain Transfer Analysis (DTA), which seeks to identify and elicit the optimum input curves for modelling. During the EE solution process, relationships between the input variables and target variables are developed, based on characteristics and attributes of the inputs instead of statistical averages. The relationships so developed between variables can then be ranked appropriately and selected for modelling process. This paper focuses on three distinct petrophysical data scenarios where inputs are ranked prior to modelling: prediction of continuous permeability from discrete core measurements, porosity from multiple logging measurements and finally the prediction of key geomechanical properties. Each input curve is ranked against a target feature. For each case study, the best ranked features were carried forward to the modelling stage, and the results are validated alongside conventional interpretation methods. Ranked features were also compared between different machine learning algorithms: DTA, Neural Networks and Multiple Linear Regression. Results are compared with the available data for various case studies. The use of the new feature selection has been proven to improve accuracy and precision of prediction results from multiple modelling algorithms.


2020 ◽  
Vol 24 (5) ◽  
pp. 300-312
Author(s):  
Jian-qiang Guo ◽  
Shu-hen Chiang ◽  
Min Liu ◽  
Chi-Chun Yang ◽  
Kai-yi Guo

Housing frenzies in China have attracted widespread global attention over the past few years, but the key is how to more accurately forecast housing prices in order to establish an effective real estate policy. Based on the ubiquitousness and immediacy of Internet data, this research adopts a broader version of text mining to search for keywords in relation to housing prices and then evaluates the predictive abilities using machine learning algorithms. Our findings indicate that this new method, especially random forest, not only detects turning points, but also offers prediction ability that clearly outperforms traditional regression analysis. Overall, the prediction based on online search data through a machine learning mechanism helps us better understand the trends of house prices in China.


2021 ◽  
Vol 1916 (1) ◽  
pp. 012042
Author(s):  
Ranjani Dhanapal ◽  
A AjanRaj ◽  
S Balavinayagapragathish ◽  
J Balaji

Sign in / Sign up

Export Citation Format

Share Document