scholarly journals Selection of Suitable Material for Journal Bearing by Tribology

2020 ◽  
Vol 8 (6) ◽  
pp. 4392-4399

Wear is an influencing parameter which reduces the overall life of a machine and its parts. The wear rate and coefficient of friction under the same conditions of speed, load, lubrication and time were calculated for a set of materials used as journal bearings. Since journal bearings are important in a variety of applications, a wise selection of material with a constant low wear rate and low coefficient of friction is essential. The four materials tested for this purpose include Molybdenum Disulphide (MoS2 ), Stainless Steel (SS 304), Nylon 66, INCONEL 625. The basic methodology for determining wear and friction of these materials involves the use of a pin-on-disc test apparatus. The materials taken for testing are made into a pin of diameter and length 8 mm and 25 mm respectively. Scanning Electron Microscope (SEM) analysis and surface roughness measurements were carried out to study the properties. Hence, INCONEL 625 was found to be the ideal material for journal bearing applications due to its low wear rate, no fluctuation in wear rate, lower coefficient of friction and better mechanical properties compared to others.

2018 ◽  
Vol 140 (4) ◽  
Author(s):  
A. Senatore ◽  
T. V. V. L. N. Rao

Partial slip texture surfaces have proven to be effective to improve load capacity and reduce coefficient of friction in slider and journal bearings. By controlling the partial slip surface texture properties, bearing with desired performance can be designed. It is of consequent interest to study the lubrication of slider and journal bearing systems taking into consideration design of partial slip texture surfaces. This paper aims at covering several investigation works related to slider and journal bearing lubricated with Newtonian fluids focusing on partial slip texture influence on bearing performance characteristics.


2018 ◽  
Vol 140 (3) ◽  
Author(s):  
Faisal Rahmani ◽  
R. K. Pandey ◽  
J. K. Dutt

It becomes impossible to use conventional fluid film journal bearings in the hot working environments (500–800 °C) due to rapid thermal degradation of lubricating oils. Under this situation, powder lubricants prove beneficial in spite of high friction values associated with them in comparison to lubricating oils. Thus, reduction of friction in powder-lubricated journal bearings is an essential task for making the operation energy efficient. Hence, the objective of this paper is to explore the reduction of coefficient of friction in a powder-lubricated journal bearing employing different pocket shapes (elliptical, parabolic, rectangular, and trapezoidal) placed on bore surface. Based on the investigations reported herein, it is found that the journal bearing having rectangular pocket yields least coefficient of friction among all the cases.


1983 ◽  
Vol 105 (4) ◽  
pp. 647-655 ◽  
Author(s):  
H. Heshmat ◽  
J. A. Walowit ◽  
O. Pinkus

This work is concerned with an evaluation of the performance of a gas journal bearing using a spring supported compliant foil as the bearing surface. The analysis, conducted for both single and multipad configurations, is concerned with the effects that the various structural, geometric, and operational variables have on bearing behavior. Following the solution of the relevant differential equation, tabular or graphical solutions are provided for a range of relevant geometric and operational parameters. The solutions include values of the colinear and cross-coupled spring coefficients due to both structural and hydrodynamic stiffness. Desirable design features with regard to start of bearing arc, selection of load angle, number of pads and degree of compliance are discussed.


2021 ◽  
Vol 2021 ◽  
pp. 1-25 ◽  
Author(s):  
Peng Li ◽  
Fang Zeng ◽  
Sen Xiao ◽  
Dong Zhen ◽  
Hao Zhang ◽  
...  

The purpose of this paper is to numerically study the effect of texture bottom profile on static, dynamic, and stability performance parameters of hydrodynamic journal bearings. The different performance parameters of square textured journal bearings with different bottom profiles are numerically investigated and compared with those of smooth journal bearing. There are five bottom profiles of this square texture: flat, curved, isosceles triangle (T1), oblique triangle (T2), and oblique triangle (T3). The static and dynamic coefficients are calculated by solving the steady-state Reynolds equation and the perturbation equations with FDM numerical technique. The performance characteristics under different texture distribution, depth, and bottom profiles are studied, and the current numerical results show that the selection of texture parameters is crucial to improve the static, dynamic, and stability performances of hydrodynamic journal bearing. Meanwhile, it is also found that the square texture with a flat bottom profile has a higher improvement in the values of static performance parameters in comparison to those other bottom profiles. Moreover, the simulation results indicate that the dynamic and stability performances improvement of textured journal bearing is also significant, especially when the eccentricity ratio is smaller.


1969 ◽  
Vol 91 (3) ◽  
pp. 516-521 ◽  
Author(s):  
A. Seireg ◽  
H. Ezzat

This paper presents an automated system for the selection of the length, clearance, and lubricant viscosity which optimize the performance of a hydrodynamic journal bearing, under specified values or ranges of load and speed. The study illustrates the feasibility of applying optimal programming techniques for the development of bearing design systems.


Author(s):  
L. Morais ◽  
L. A. Ferreira

This work presents a sensibility analysis for the journal bearings of combustion engines mass balancing systems. Applying it, it’s possible to improve the journal bearings and avoid possible failures. This analysis consists on studying the effects of the variation of the journal bearings main parameters (radial clearance, journal bearing diameter and journal bearing length) on the journal bearings operating conditions (minimum film thickness, maximum pressure and power loss). The analysis also includes the comparison and selection of the different metallic materials that can be used in these journal bearings, as well as the selection of the lubrication system groove suitable for the journal bearings used in this kind of application. This sensibility analysis shows that: increasing the radial clearance the minimum film thickness increases, the maximum pressure remains approximately the same and the power loss decreases; increasing the journal bearing length, the minimum film thickness and power loss increase and the maximum pressure decreases; increasing the journal bearing diameter, the minimum film thickness and power loss increase and the maximum pressure decreases. At last, it’s found that the white metals (Babbitts) are considered the most advantageous and indicated materials for these journal bearings, and that the lubrication system grooves should be circumferential.


2020 ◽  
Vol 7 ◽  
pp. 16
Author(s):  
Poovalingam Muthu

In recent years, metal matrix composite (MMCs) have been receiving worldwide attention on account of their superior strength-to-weight ratio and stiffness. Among the several classes of composite materials, Aluminium matrix ceramic reinforcement composites have attracted increasing attention due to their unique properties such as better specific strength, specific stiffness, wear resistance, excellent corrosion resistance, high elastic modulus and light weight. The aim of the present investigation is to optimize the dry sliding wear parameters of Aluminum LM25 matrix reinforced with silicon carbide (SiC) (5 wt.%) and Copper (Cu) (3 wt.%) using Taguchi based grey relational analysis. In this work, the composite is prepared using stir casting method. The specimens are prepared according to ASTM standard. Using pin-on-disc apparatus, wear tests are conducted as per Taguchi's L9 orthogonal array and optimum wear parameters are identified with an objective to minimise the wear rate and coefficient of friction based on the grey relational grade. The effect of parameters on the wear rate and coefficient of friction was determined using Analysis of variance (ANOVA). Finally, the experimental results were verified using confirmation tests and the SEM analysis was carried out to study the wear mechanism.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4217
Author(s):  
Üsame Ali Usca ◽  
Mahir Uzun ◽  
Mustafa Kuntoğlu ◽  
Serhat Şap ◽  
Khaled Giasin ◽  
...  

Tribological properties of engineering components are a key issue due to their effect on the operational performance factors such as wear, surface characteristics, service life and in situ behavior. Thus, for better component quality, process parameters have major importance, especially for metal matrix composites (MMCs), which are a special class of materials used in a wide range of engineering applications including but not limited to structural, automotive and aeronautics. This paper deals with the tribological behavior of Cu-B-CrC composites (Cu-main matrix, B-CrC-reinforcement by 0, 2.5, 5 and 7.5 wt.%). The tribological characteristics investigated in this study are the coefficient of friction, wear rate and weight loss. For this purpose, four levels of sliding distance (1000, 1500, 2000 and 2500 m) and four levels of applied load (10, 15, 20 and 25 N) were used. In addition, two levels of sliding velocity (1 and 1.5 m/s), two levels of sintering time (1 and 2 h) and two sintering temperatures (1000 and 1050 °C) were used. Taguchi’s L16 orthogonal array was used to statistically analyze the aforementioned input parameters and to determine their best levels which give the desired values for the analyzed tribological characteristics. The results were analyzed by statistical analysis, optimization and 3D surface plots. Accordingly, it was determined that the most effective factor for wear rate, weight loss and friction coefficients is the contribution rate. According to signal-to-noise ratios, optimum solutions can be sorted as: the highest levels of parameters except for applied load and reinforcement ratio (2500 m, 10 N, 1.5 m/s, 2 h, 1050 °C and 0 wt.%) for wear rate, certain levels of all parameters (1000 m, 10 N, 1.5 m/s, 2 h, 1050 °C and 2.5 wt.%) for weight loss and 1000 m, 15 N, 1 m/s, 1 h, 1000 °C and 0 wt.% for the coefficient of friction. The comprehensive analysis of findings has practical significance and provides valuable information for a composite material from the production phase to the actual working conditions.


Author(s):  
Biswajit Roy ◽  
Sudip Dey

The precise prediction of a rotor against instability is needed for avoiding the degradation or failure of the system’s performance due to the parametric variabilities of a bearing system. In general, the design of the journal bearing is framed based on the deterministic theoretical analysis. To map the precise prediction of hydrodynamic performance, it is needed to include the uncertain effect of input parameters on the output behavior of the journal bearing. This paper presents the uncertain hydrodynamic analysis of a two-axial-groove journal bearing including randomness in bearing oil viscosity and supply pressure. To simulate the uncertainty in the input parameters, the Monte Carlo simulation is carried out. A support vector machine is employed as a metamodel to increase the computational efficiency. Both individual and compound effects of uncertainties in the input parameters are studied to quantify their effect on the steady-state and dynamic characteristics of the bearing.


Sign in / Sign up

Export Citation Format

Share Document