scholarly journals A Novel Method to Detect Inner Emotion States of Human using Artificial Neural Networks

2020 ◽  
Vol 8 (6) ◽  
pp. 5820-5825

Human computer interaction is a fast growing area of research where in the physiological signals are used to identify human emotion states. Identifying emotion states can be done using various approaches. One such approach which gained interest of research is through physiological signals using EEG. In the present work, a novel approach is proposed to elicit emotion states using 3-D Video-audio stimuli. Around 66 subjects were involved during data acquisition using 32 channel Enobio device. FIR filter is used to preprocess the acquired raw EEG signals. The desired frequency bands like alpha, delta, beta and theta are extracted using 8-level DWT. The statistical features, Hurst exponential, entropy, power, energy, differential entropy of each bands are computed. Artificial Neural network is implemented using Sequential Keras model and applied on the extracted features to classify in to four classes (HVLA, HVHA, LVHA and LVLA) and eight discrete emotion states like clam, relax, happy, joy, sad, fear, tensed and bored. The performance of ANN classifier found to perform better for 4- classes than 8-classes with a classification rate of 90.835% and 74.0446% respectively. The proposed model achieved better performance rate in detecting discrete emotion states. This model can be used to build applications on health like stress / depression detection and on entertainment to build emotional DJ.

Author(s):  
ANDRÉ RICARDO BACKES ◽  
DALCIMAR CASANOVA ◽  
ODEMIR MARTINEZ BRUNO

Texture is an important visual attribute used to describe the pixel organization in an image. As well as it being easily identified by humans, its analysis process demands a high level of sophistication and computer complexity. This paper presents a novel approach for texture analysis, based on analyzing the complexity of the surface generated from a texture, in order to describe and characterize it. The proposed method produces a texture signature which is able to efficiently characterize different texture classes. The paper also illustrates a novel method performance on an experiment using texture images of leaves. Leaf identification is a difficult and complex task due to the nature of plants, which presents a huge pattern variation. The high classification rate yielded shows the potential of the method, improving on traditional texture techniques, such as Gabor filters and Fourier analysis.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Fabio Baselice ◽  
Giampaolo Ferraioli ◽  
Vito Pascazio

Brain tissue segmentation in Magnetic Resonance Imaging is useful for a wide range of applications. Classical approaches exploit the gray levels image and implement criteria for differentiating regions. Within this paper a novel approach for brain tissue joint segmentation and classification is presented. Starting from the estimation of proton density and relaxation times, we propose a novel method for identifying the optimal decision regions. The approach exploits the statistical distribution of the involved signals in the complex domain. The technique, compared to classical threshold based ones, is able to globally improve the classification rate. The effectiveness of the approach is evaluated on both simulated and real datasets.


Author(s):  
J Ph Guillet ◽  
E Pilon ◽  
Y Shimizu ◽  
M S Zidi

Abstract This article is the first of a series of three presenting an alternative method of computing the one-loop scalar integrals. This novel method enjoys a couple of interesting features as compared with the method closely following ’t Hooft and Veltman adopted previously. It directly proceeds in terms of the quantities driving algebraic reduction methods. It applies to the three-point functions and, in a similar way, to the four-point functions. It also extends to complex masses without much complication. Lastly, it extends to kinematics more general than that of the physical, e.g., collider processes relevant at one loop. This last feature may be useful when considering the application of this method beyond one loop using generalized one-loop integrals as building blocks.


Animals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 721
Author(s):  
Krzysztof Adamczyk ◽  
Wilhelm Grzesiak ◽  
Daniel Zaborski

The aim of the present study was to verify whether artificial neural networks (ANN) may be an effective tool for predicting the culling reasons in cows based on routinely collected first-lactation records. Data on Holstein-Friesian cows culled in Poland between 2017 and 2018 were used in the present study. A general discriminant analysis (GDA) was applied as a reference method for ANN. Considering all predictive performance measures, ANN were the most effective in predicting the culling of cows due to old age (99.76–99.88% of correctly classified cases). In addition, a very high correct classification rate (99.24–99.98%) was obtained for culling the animals due to reproductive problems. It is significant because infertility is one of the conditions that are the most difficult to eliminate in dairy herds. The correct classification rate for individual culling reasons obtained with GDA (0.00–97.63%) was, in general, lower than that for multilayer perceptrons (MLP). The obtained results indicated that, in order to effectively predict the previously mentioned culling reasons, the following first-lactation parameters should be used: calving age, calving difficulty, and the characteristics of the lactation curve based on Wood’s model parameters.


2021 ◽  
Vol 25 (3) ◽  
pp. 711-738
Author(s):  
Phu Pham ◽  
Phuc Do

Link prediction on heterogeneous information network (HIN) is considered as a challenge problem due to the complexity and diversity in types of nodes and links. Currently, there are remained challenges of meta-path-based link prediction in HIN. Previous works of link prediction in HIN via network embedding approach are mainly focused on exploiting features of node rather than existing relations in forms of meta-paths between nodes. In fact, predicting the existence of new links between non-linked nodes is absolutely inconvincible. Moreover, recent HIN-based embedding models also lack of thorough evaluations on the topic similarity between text-based nodes along given meta-paths. To tackle these challenges, in this paper, we proposed a novel approach of topic-driven multiple meta-path-based HIN representation learning framework, namely W-MMP2Vec. Our model leverages the quality of node representations by combining multiple meta-paths as well as calculating the topic similarity weight for each meta-path during the processes of network embedding learning in content-based HINs. To validate our approach, we apply W-TMP2Vec model in solving several link prediction tasks in both content-based and non-content-based HINs (DBLP, IMDB and BlogCatalog). The experimental outputs demonstrate the effectiveness of proposed model which outperforms recent state-of-the-art HIN representation learning models.


2021 ◽  
pp. 1-11
Author(s):  
Aysu Melis Buyuk ◽  
Gul T. Temur

In line with the increase in consciousness on sustainability in today’s global world, great emphasis has been attached to food waste management. Food waste is a complex issue to manage due to uncertainties on quality, quantity, location, and time of wastes, and it involves different decisions at many stages from seed to post-consumption. These ambiguities re-quire that some decisions should be handled in a linguistic and ambiguous environment. That forces researchers to benefit from fuzzy sets mostly utilized to deal with subjectivity that causes uncertainty. In this study, as a novel approach, the spherical fuzzy analytic hierarchy process (SFAHP) was used to select the best food treatment option. In the model, four main criteria (infrastructural, governmental, economic, and environmental) and their thirteen sub-criteria are considered. A real case is conducted to show how the proposed model can be used to assess four food waste treatment options (composting, anaerobic digestion, landfilling, and incineration). Also, a sensitivity analysis is generated to check whether the evaluations on the main criteria can change the results or not. The proposed model aims to create a subsidiary tool for decision makers in relevant companies and institutions.


Author(s):  
Haitham Baomar ◽  
Peter J. Bentley

AbstractWe describe the Intelligent Autopilot System (IAS), a fully autonomous autopilot capable of piloting large jets such as airliners by learning from experienced human pilots using Artificial Neural Networks. The IAS is capable of autonomously executing the required piloting tasks and handling the different flight phases to fly an aircraft from one airport to another including takeoff, climb, cruise, navigate, descent, approach, and land in simulation. In addition, the IAS is capable of autonomously landing large jets in the presence of extreme weather conditions including severe crosswind, gust, wind shear, and turbulence. The IAS is a potential solution to the limitations and robustness problems of modern autopilots such as the inability to execute complete flights, the inability to handle extreme weather conditions especially during approach and landing where the aircraft’s speed is relatively low, and the uncertainty factor is high, and the pilots shortage problem compared to the increasing aircraft demand. In this paper, we present the work done by collaborating with the aviation industry to provide training data for the IAS to learn from. The training data is used by Artificial Neural Networks to generate control models automatically. The control models imitate the skills of the human pilot when executing all the piloting tasks required to pilot an aircraft between two airports. In addition, we introduce new ANNs trained to control the aircraft’s elevators, elevators’ trim, throttle, flaps, and new ailerons and rudder ANNs to counter the effects of extreme weather conditions and land safely. Experiments show that small datasets containing single demonstrations are sufficient to train the IAS and achieve excellent performance by using clearly separable and traceable neural network modules which eliminate the black-box problem of large Artificial Intelligence methods such as Deep Learning. In addition, experiments show that the IAS can handle landing in extreme weather conditions beyond the capabilities of modern autopilots and even experienced human pilots. The proposed IAS is a novel approach towards achieving full control autonomy of large jets using ANN models that match the skills and abilities of experienced human pilots and beyond.


Mathematics ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 626
Author(s):  
Svajone Bekesiene ◽  
Rasa Smaliukiene ◽  
Ramute Vaicaitiene

The present study aims to elucidate the main variables that increase the level of stress at the beginning of military conscription service using an artificial neural network (ANN)-based prediction model. Random sample data were obtained from one battalion of the Lithuanian Armed Forces, and a survey was conducted to generate data for the training and testing of the ANN models. Using nonlinearity in stress research, numerous ANN structures were constructed and verified to limit the optimal number of neurons, hidden layers, and transfer functions. The highest accuracy was obtained by the multilayer perceptron neural network (MLPNN) with a 6-2-2 partition. A standardized rescaling method was used for covariates. For the activation function, the hyperbolic tangent was used with 20 units in one hidden layer as well as the back-propagation algorithm. The best ANN model was determined as the model that showed the smallest cross-entropy error, the correct classification rate, and the area under the ROC curve. These findings show, with high precision, that cohesion in a team and adaptation to military routines are two critical elements that have the greatest impact on the stress level of conscripts.


Sign in / Sign up

Export Citation Format

Share Document