Left counital Hopf algebras on bi-decorated planar rooted forests and Rota-Baxter systems

2020 ◽  
Vol 27 (2) ◽  
pp. 219-243 ◽  
Author(s):  
Xiao-Song Peng ◽  
Yi Zhang ◽  
Xing Gao ◽  
Yan-Feng Luo
Keyword(s):  
2021 ◽  
Vol 225 (10) ◽  
pp. 106678
Author(s):  
Johannes Berger ◽  
Azat M. Gainutdinov ◽  
Ingo Runkel
Keyword(s):  

1978 ◽  
Vol 6 (17) ◽  
pp. 1789-1800 ◽  
Author(s):  
Warren D. Nichols
Keyword(s):  

2009 ◽  
Vol 213 (7) ◽  
pp. 1399-1417 ◽  
Author(s):  
Mitja Mastnak ◽  
Sarah Witherspoon

Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1309
Author(s):  
Jerzy Lukierski

We construct recently introduced palatial NC twistors by considering the pair of conjugated (Born-dual) twist-deformed D=4 quantum inhomogeneous conformal Hopf algebras Uθ(su(2,2)⋉T4) and Uθ¯(su(2,2)⋉T¯4), where T4 describes complex twistor coordinates and T¯4 the conjugated dual twistor momenta. The palatial twistors are suitably chosen as the quantum-covariant modules (NC representations) of the introduced Born-dual Hopf algebras. Subsequently, we introduce the quantum deformations of D=4 Heisenberg-conformal algebra (HCA) su(2,2)⋉Hℏ4,4 (Hℏ4,4=T¯4⋉ℏT4 is the Heisenberg algebra of twistorial oscillators) providing in twistorial framework the basic covariant quantum elementary system. The class of algebras describing deformation of HCA with dimensionfull deformation parameter, linked with Planck length λp, is called the twistorial DSR (TDSR) algebra, following the terminology of DSR algebra in space-time framework. We describe the examples of TDSR algebra linked with Palatial twistors which are introduced by the Drinfeld twist and the quantization map in Hℏ4,4. We also introduce generalized quantum twistorial phase space by considering the Heisenberg double of Hopf algebra Uθ(su(2,2)⋉T4).


2020 ◽  
pp. 1-14
Author(s):  
NICOLÁS ANDRUSKIEWITSCH ◽  
DIRCEU BAGIO ◽  
SARADIA DELLA FLORA ◽  
DAIANA FLÔRES

Abstract We present new examples of finite-dimensional Nichols algebras over fields of characteristic 2 from braided vector spaces that are not of diagonal type, admit realizations as Yetter–Drinfeld modules over finite abelian groups, and are analogous to Nichols algebras of finite Gelfand–Kirillov dimension in characteristic 0. New finite-dimensional pointed Hopf algebras over fields of characteristic 2 are obtained by bosonization with group algebras of suitable finite abelian groups.


2020 ◽  
Vol 48 (11) ◽  
pp. 4615-4637
Author(s):  
Rongchuan Xiong ◽  
Zhiqiang Yu
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document