scholarly journals Metric mean dimension and analog compression

Author(s):  
Yonatan Gutman ◽  
Adam Śpiewak

<div>Wu and Verdú developed a theory of almost lossless analog compression, where one imposes various regularity conditions on the compressor and the decompressor with the input signal being modelled by a (typically infinite-entropy) stationary stochastic process. In this work we consider all stationary stochastic processes with trajectories in a prescribed set of (bi-)infinite sequences and find uniform lower and upper bounds for certain compression rates in terms of metric mean dimension and mean box dimension. An essential tool is the recent Lindenstrauss-Tsukamoto variational principle expressing metric mean dimension in terms of rate-distortion functions. We obtain also lower bounds on compression rates for a fixed stationary process in terms of the rate-distortion dimension rates and study several examples.</div>

2020 ◽  
Author(s):  
Yonatan Gutman ◽  
Adam Śpiewak

<div>Wu and Verdú developed a theory of almost lossless analog compression, where one imposes various regularity conditions on the compressor and the decompressor with the input signal being modelled by a (typically infinite-entropy) stationary stochastic process. In this work we consider all stationary stochastic processes with trajectories in a prescribed set of (bi-)infinite sequences and find uniform lower and upper bounds for certain compression rates in terms of metric mean dimension and mean box dimension. An essential tool is the recent Lindenstrauss-Tsukamoto variational principle expressing metric mean dimension in terms of rate-distortion functions. We obtain also lower bounds on compression rates for a fixed stationary process in terms of the rate-distortion dimension rates and study several examples.</div>


Entropy ◽  
2021 ◽  
Vol 23 (6) ◽  
pp. 722
Author(s):  
Xin Li ◽  
Dongya Wu

In this paper, the high-dimensional linear regression model is considered, where the covariates are measured with additive noise. Different from most of the other methods, which are based on the assumption that the true covariates are fully obtained, results in this paper only require that the corrupted covariate matrix is observed. Then, by the application of information theory, the minimax rates of convergence for estimation are investigated in terms of the ℓp(1≤p<∞)-losses under the general sparsity assumption on the underlying regression parameter and some regularity conditions on the observed covariate matrix. The established lower and upper bounds on minimax risks agree up to constant factors when p=2, which together provide the information-theoretic limits of estimating a sparse vector in the high-dimensional linear errors-in-variables model. An estimator for the underlying parameter is also proposed and shown to be minimax optimal in the ℓ2-loss.


1997 ◽  
Vol 84 (1) ◽  
pp. 176-178
Author(s):  
Frank O'Brien

The author's population density index ( PDI) model is extended to three-dimensional distributions. A derived formula is presented that allows for the calculation of the lower and upper bounds of density in three-dimensional space for any finite lattice.


Author(s):  
S. Yahya Mohamed ◽  
A. Mohamed Ali

In this paper, the notion of energy extended to spherical fuzzy graph. The adjacency matrix of a spherical fuzzy graph is defined and we compute the energy of a spherical fuzzy graph as the sum of absolute values of eigenvalues of the adjacency matrix of the spherical fuzzy graph. Also, the lower and upper bounds for the energy of spherical fuzzy graphs are obtained.


Entropy ◽  
2021 ◽  
Vol 23 (8) ◽  
pp. 940
Author(s):  
Zijing Wang ◽  
Mihai-Alin Badiu ◽  
Justin P. Coon

The age of information (AoI) has been widely used to quantify the information freshness in real-time status update systems. As the AoI is independent of the inherent property of the source data and the context, we introduce a mutual information-based value of information (VoI) framework for hidden Markov models. In this paper, we investigate the VoI and its relationship to the AoI for a noisy Ornstein–Uhlenbeck (OU) process. We explore the effects of correlation and noise on their relationship, and find logarithmic, exponential and linear dependencies between the two in three different regimes. This gives the formal justification for the selection of non-linear AoI functions previously reported in other works. Moreover, we study the statistical properties of the VoI in the example of a queue model, deriving its distribution functions and moments. The lower and upper bounds of the average VoI are also analysed, which can be used for the design and optimisation of freshness-aware networks. Numerical results are presented and further show that, compared with the traditional linear age and some basic non-linear age functions, the proposed VoI framework is more general and suitable for various contexts.


2021 ◽  
Vol 37 (3) ◽  
pp. 919-932
Author(s):  
Byeong Moon Kim ◽  
Byung Chul Song ◽  
Woonjae Hwang

2021 ◽  
Vol 103 (5) ◽  
Author(s):  
Li Peng ◽  
Wen-Bin He ◽  
Stefano Chesi ◽  
Hai-Qing Lin ◽  
Xi-Wen Guan

Sign in / Sign up

Export Citation Format

Share Document