scholarly journals DevOps phases across Software Development Lifecycle

Author(s):  
Mayank Gokarna

DevOps is the combination of cultural mindset, practices, and tools that increases a team's ability to release applications and services at high velocity. The development and operations teams always have a conflict around the scope of responsibility. With these differences the quality and speed of delivery across software Development Life Cycle is negatively impacted. DevOps is about removing the barriers between two traditionally delimited teams, development and operations. With DevOps, these two teams work together to optimize both the productivity of developers and the reliability of operations. They strive to communicate frequently, increase efficiencies, and improve the quality of services they provide. They take full ownership for their services, often beyond where their stated roles or titles have traditionally been scoped. Transitioning to DevOps requires a change in culture and mindset first. It is quite difficult to persuade a whole company to change its culture at once. This paper aims to bring different phases of software development lifecycle into DevOps implementation strategy and presents a comprehensive collection of leading tools used across Software Development life Cycle to automate and integrate different stages of software delivery. This paper also highlights on DevOps practices which span across different phases of the Software Development Lifecycle and how those can be implemented with different tools available.

2021 ◽  
Author(s):  
Mayank Gokarna

DevOps is the combination of cultural mindset, practices, and tools that increases a team's ability to release applications and services at high velocity. The development and operations teams always have a conflict around the scope of responsibility. With these differences the quality and speed of delivery across software Development Life Cycle is negatively impacted. DevOps is about removing the barriers between two traditionally delimited teams, development and operations. With DevOps, these two teams work together to optimize both the productivity of developers and the reliability of operations. They strive to communicate frequently, increase efficiencies, and improve the quality of services they provide. They take full ownership for their services, often beyond where their stated roles or titles have traditionally been scoped. Transitioning to DevOps requires a change in culture and mindset first. It is quite difficult to persuade a whole company to change its culture at once. This paper aims to bring different phases of software development lifecycle into DevOps implementation strategy and presents a comprehensive collection of leading tools used across Software Development life Cycle to automate and integrate different stages of software delivery. This paper also highlights on DevOps practices which span across different phases of the Software Development Lifecycle and how those can be implemented with different tools available.


2021 ◽  
Vol 12 (1) ◽  
pp. 88-101
Author(s):  
Muhammad Rizky Hasan ◽  
Suhermanto Suhermanto ◽  
Suharmanto Suharmanto

Saat ini, pengembangan perangkat lunak lebih kompleks daripada sebelumnya di mana keamanan menjadi salah satu yang paling krusial. Masalah keamanan menjadi bagian penting untuk developer perangkat lunak.Kebutuhan keamanan dalam pengembangan perangkat lunak menghasilkanpenciptaan yang disebut Secure Software Development Life Cycle (SSDLC). Paper ini menyoroti kerentanan perangkat lunak dan pendekatan untuk mengatasinya. Untuk itu akan dibahas beberapa tool keamanan seperti OWASP dan ISSAF. Tujuannya agar dapat mengetahui sejauh mana tool-tool tersebut meminimalkan kerentanan dalam pengembangan perangkat lunak.


This paper takes a deeper look at data breach, its causes and the linked vulnerability aspects in the application development lifecycle. Further, the Vulnerabilities are mapped to the software development life cycle (SDLC) involving requirement elicitation, design, development, testing and deployment phases. Being aware of exact SDLC life cycle where the vulnerabilities are injected, suitable security practices (countermeasures) can be adopted in delivery methodology, which can control the eventual data breaches and safeguard the application from security perspective. Our research focuses on Evolution of Vulnerabilities through the application development life cycle, and we have leveraged “Inverted Tree Structure/Attack Tree” and “Affinity Principles” to map the vulnerabilities to right Software Development Life Cycle.


Author(s):  
Andriy Lishchytovych ◽  
Volodymyr Pavlenko

The present article describes setup, configuration and usage of the key performance indicators (KPIs) of members of project teams involved into the software development life cycle. Key performance indicators are described for the full software development life cycle and imply the deep integration with both task tracking systems and project code management systems, as well as a software product quality testing system. To illustrate, we used the extremely popular products - Atlassian Jira (tracking development tasks and bugs tracking system) and git (code management system). The calculation of key performance indicators is given for a team of three developers, two testing engineers responsible for product quality, one designer, one system administrator, one product manager (responsible for setting business requirements) and one project manager. For the key members of the team, it is suggested to use one integral key performance indicator per the role / team member, which reflects the quality of the fulfillment of the corresponding role of the tasks. The model of performance indicators is inverse positive - the initial value of each of the indicators is zero and increases in the case of certain deviations from the standard performance of official duties inherent in a particular role. The calculation of the proposed key performance indicators can be fully automated (in particular, using Atlassian Jira and Atlassian Bitbucket (git) or any other systems, like Redmine, GitLab or TestLink), which eliminates the human factor and, after the automation, does not require any additional effort to calculate. Using such a tool as the key performance indicators allows project managers to completely eliminate bias, reduce the emotional component and provide objective data for the project manager. The described key performance indicators can be used to reduce the time required to resolve conflicts in the team, increase productivity and improve the quality of the software product.


2022 ◽  
pp. 819-834
Author(s):  
Nayem Rahman

Software development projects have been blamed for being behind schedule, cost overruns, and the delivery of poor quality product. This paper presents a simulation model of a data warehouse to evaluate the feasibility of different software development controls and measures to better manage a software development lifecycle, and improve the performance of the launched software. This paper attempts to address the practical issue of code defects in each stage of data warehouse application development. The author has compared the defect removal rate of their previous project to the newly proposed enhanced project development life cycle that uses code inspection and code scorecard along with other phases of software development life cycle. Simulation results show that the code inspection and code score-carding have achieved a significant code defect reduction. This has also significantly improved the software development process and allowed for a flawless production execution. The author proposes this simulation model to a data warehouse application development process to enable developers to improve their current process.


Software become an unavoidable in every once life. Quality of the software is an import aspect in the software development life cycle. Quality for a software is represented in terms of functional and non-functional requirement. Software architecture is used to represent the using set of components and is connectivity as a relationship between these components. To assure the development process meet the requirement given by the user, the Software Evaluation is used. Early detection of error protect the software development producing the defect software. ATAM is the one of the method used to detect the risk, non-risk, scenarios and tradeoff in the earlier stage of development life cycle. Here in this paper security scenarios for mobile application has been elicited and compared with the scenarios extracted from the whatsapp application. Comparison shows few scenarios need to added with existing scenarios in order to improve / ensure full security for the metadata.


2020 ◽  
Author(s):  
Mayank Gokarna

DevOps is the combination of cultural mindset, practices, and tools that increases a team's ability to release applications and services at high velocity. Transitioning to DevOps requires a change in culture and mindset first. DevOps is about removing the barriers between two traditionally delimited teams, development and operations. With DevOps, these two teams work together to optimize both the productivity of developers and the reliability of operations. They strive to communicate frequently, increase efficiencies, and improve the quality of services they provide. They take full ownership for their services, often beyond where their stated roles or titles have traditionally been scoped. This paper aims to bring different phases of software development lifecycle into DevOps implementation strategy.This paper highlights on DevOps practices which span across different phases of the Software Development Lifecycle (SDLC).


Author(s):  
Sampada G.C ◽  
Tende Ivo Sake ◽  
Amrita

Background: With the advancement in the field of software development, software poses threats and risks to customers’ data and privacy. Most of these threats are persistent because security is mostly considered as a feature or a non-functional requirement, not taken into account during the software development life cycle (SDLC). Introduction: In order to evaluate the security performance of a software system, it is necessary to integrate the security metrics during the SDLC. The appropriate security metrics adopted for each phase of SDLC aids in defining the security goals and objectives of the software as well as quantify the security in the software. Methods: This paper presents systematic review and catalog of security metrics that can be adopted during the distinguishable phases of SDLC, security metrics for vulnerability and risk assessment reported in the literature for secure development of software. The practices of these metrics enable software security experts to improve the security characteristics of the software being developed. The critical analysis of security metrics of each phase and their comparison are also discussed. Results: Security metrics obtained during the development processes help to improve the confidentiality, integrity, and availability of software. Hence, it is imperative to consider security during the development of the software, which can be done with the use of software security metrics. Conclusion: This paper reviews the various security metrics that are meditated in the copious phases during the progression of the SDLC in order to provide researchers and practitioners with substantial knowledge for adaptation and further security assessment.


Sign in / Sign up

Export Citation Format

Share Document