scholarly journals PRODUCTION OF ALPHA AMYLASE AND CELLULASE FROM SOLID STATE CULTURE OF ASPERGILLUS OCHRACEUS: A FEASIBILITY ANALYSIS

2021 ◽  
Vol 4 (3) ◽  
pp. 1-3
Author(s):  
Sohail Khan ◽  
Ashwani Mathur

The growing demand and application of industrially important enzyme necessitate the need to explore new sources with diverse enzymes ranging in their specificity and activities. Enzymes are safe alternatives to chemical synthesis due to minimum side effect and ease of manufacturing. Solid state fermentation (SSF) is a cost-effective alternative to submerged fermentation with agro-residues or waste, often being used as substrate for growing diverse organisms for production of metabolites. Current study is one of the scarce report on exploring alpha amylase and cellulase production ability Aspergillus ochraceus (MTCC 1877) using wheat bran as substrate at relative humidity of 90% and at 30 ºC, for 7 days. Result showed the potential of Aspergillus ochraceus (MTCC 1877), as potential source of the two enzymes. Results revealed comparatively higher alpha amylase activity in the SSF extract of Aspergillus ochraceus (MTCC 1877) in comparison to Trichoderma longibrachiatum (ITCC 7839). On the contrary, comparatively higher cellulase activity was observed in the SSF extract of Trichoderma longibrachiatum (ITCC 7839). The results showed the potential of Aspergillus ochraceus (MTCC 1877) as a source of the two enzymes. Variation in enzymes activity may be attributed to the experimental culture conditions and may be further optimized to enhance the enzymes yield.

2011 ◽  
Vol 183-185 ◽  
pp. 994-998
Author(s):  
Shuo Dong ◽  
Nai Yu Chi ◽  
Qing Fang Zhang

The design of an optimum and cost-efficient medium for production of cold-active cellulase by Penicillium cordubense D28 was attempted by using response surface methodology (RSM). Based on the Plackett–Burman design, corn meal, (NH4)2SO4 and branc were selected as the most critical nutrient. Subsequently, they were investigated by the Box-Behnken design. Results showed that the maximum cold-active cellulase activity of 110.4U/mL was predicted when the concentration of corn meal, (NH4)2SO4 and branc were 21.97 g/L, 2.39 g/L and 14.99 g/L, respectively. The results were further verified by triplicate experiments. The batch reactors were operated under an optimized condition of the respective corn meal, (NH4)2SO4 and branc concentration of 22 g/L , 2.4 g/L and 15 g/L , the initial pH of 6.0 and experimental temperature of 20 ± 1°C. Without further pH adjustment, the maximum cold-active cellulase activity of 109.8 U/mL was obtained based on the optimized medium with further verified the practicability of this optimum strategy.


Author(s):  
Vita Wonoputri ◽  
Subiantoro Subiantoro ◽  
Made Tri Ari Penia Kresnowati ◽  
Ronny Purwadi

In this study, agriculture waste palm empty fruit bunch (EFB) was used as carbon/cellulose source in solid state fermentation for cheaper cellulase production. Fermentation operation parameters, such as: solid to liquid ratio, temperature, and pH, were varied to study the effect of those parameters towards crude cellulase activity. Two different fungi organisms, Trichoderma viride and Trichoderma reesei were used as the producers. Extracellular cellulase enzyme was extracted using simple contact method using citrate buffer. Assessment of the extracted cellulase activity by filter paper assay showed that Trichoderma viride is the superior organism capable of producing higher cellulase amount compared to Trichoderma reesei at the same fermentation condition. The optimum cellulase activity of 0.79 FPU/g dry substrate was obtained when solid to liquid ratio used for the fermentation was 1:1, while the optimum fermentation temperature and pH were found to be 30 °C and 5.5, respectively. The result obtained in this research showed the potential of EFB utilization for enzyme production. Copyright © 2018 BCREC Group. All rights reservedReceived: 14th December 2017; Revised:29th July 2018; Accepted: 3rd August 2018How to Cite: Wonoputri, V., Subiantoro, S., Kresnowati, M.T.A.P., Purwadi, R. (2018). Solid State Fermentation Parameters Effect on Cellulase Production from Empty Fruit Bunch. Bulletin of Chemical Reaction Engineering & Catalysis, 13 (3): 553-559 (doi:10.9767/bcrec.13.3.1964.553-559)Permalink/DOI: https://doi.org/10.9767/bcrec.13.3.1964.553-559 


2019 ◽  
Vol 80 (10) ◽  
pp. 1807-1822
Author(s):  
Jibrin Ndejiko Mohammed ◽  
Wan Rosmiza Zana Wan Dagang

Abstract The biodegradability and safety of the bioflocculants make them a potential alternative to non-biodegradable chemical flocculants for wastewater treatment. However, low yield and production cost has been reported to be the limiting factor for large scale bioflocculant production. Although the utilization of cheap nutrient sources is generally appealing for large scale bioproduct production, exploration to meet the demand for them is still low. Although much progress has been achieved at laboratory scale, Industrial production and application of bioflocculant is yet to be viable due to cost of the production medium and low yield. Thus, the prospects of bioflocculant application as an alternative to chemical flocculants is linked to evaluation and utilization of cheap alternative and renewable nutrient sources. This review evaluates the latest literature on the utilization of waste/wastewater as an alternative substitute for conventional expensive nutrient sources. It focuses on the mechanisms and metabolic pathways involved in microbial flocculant synthesis, culture conditions and nutrient requirements for bioflocculant production, pre-treatment, and also optimization of waste substrate for bioflocculant synthesis and bioflocculant production from waste and their efficiencies. Utilization of wastes as a microbial nutrient source drastically reduces the cost of bioflocculant production and increases the appeal of bioflocculant as a cost-effective alternative to chemical flocculants.


BioResources ◽  
2011 ◽  
Vol 6 (2) ◽  
pp. 1505-1519 ◽  
Author(s):  
Nitin Verma ◽  
Mukesh C. Bansal ◽  
Vivek Kumar

A wide variety of waste bioresources are available on our planet for conversion into bioproducts. In the biological systems, microorganisms are used to utilize waste as an energy source for the synthesis of valuable products such as biomass proteins and enzymes. The large quantities of byproducts generated during the processing of plant food involve an economic and environmental problem due to their high volumes and elimination costs. After isolation of the main constituent, there are abundant remains which represent an inexpensive material that has been undervalued until now. Pea peel waste is one of the undervalued, unused sources of energy that can serve as a potential source for cellulase production. Batch experiments have been performed, using pea peel waste as a carbon source for cellulase production under solid state cultivation by Trichoderma reesei. It was observed that 30 oC temperature and pH 5.0 are the most favorable conditions for cellulase production by T. reesei. FPase activity significantly increases by incorporation of whey as well as wheat starch hydrolysate in the basal salt media used in the production study. The present study describes the utility of pea peel waste, whey as well as wheat starch hydrolysate in cellulase production by T. reesei. The utilization of economically cheap, pea peel waste for cellulase production could be a novel, cost effective, and valuable approach in cellulase production as well as in solid waste management.


Author(s):  
Chun Chang ◽  
Guizhuan Xu ◽  
Junfang Yang ◽  
Duo Wang

The cellulase production by Trichoderma viride was optimized using artificial intelligence-based techniques under solid state fermentation. In this study, a back propagation network was designed with Levenberg-Marquardt training algorithm, and the tangent sigmoid and pure linear functions were used as the transfer functions in the hidden and output layers of the ANN, respectively. An artificial neural network coupling genetic algorithms was used to optimize the process parameters, which include the mass ratio of wheat straw to wheat bran, moisture content and fermentation time. The ultimate process parameters of optimization were mass ration of wheat straw to wheat bran 2.9, moisture content 69.6 percent, and fermentation time 123.3h. Further test experiment showed that the final cellulase activity can reach to 11.62 U/g, which was the highest value among all the experimental results. This result indicates that the genetic algorithm based on a neural network model is a better optimization method for cellulase production in solid state fermentation. To improve the cellulase production, a mixed culture system of Trichoderma viride and Aspergillus niger was also developed. The cellulase activity increased by 7.40 percent with the addition of Aspergillus niger at 72h.


2012 ◽  
Vol 518-523 ◽  
pp. 5578-5585
Author(s):  
Nan Ban ◽  
Yu Jie Zhou ◽  
Yan Ping Ye ◽  
Lin Mei Dai ◽  
Alatangaole Damirn ◽  
...  

Plackett-Burman design was employed for screening culture conditions for cellulase production by Penicillium decumbens in submerged fermentation. The results showed that wheat bran was the most significant factor influencing Filter Paper Activity (FPA) of the cellulase, followed by cellulose microcrystalline and initial pH, which could be further optimized for improving the cellulase activity. The effects of pH and temperature on FPA assay were investigated, and optimal FPA could be obtained at pH 4.5 and 60 °C. The stabilities of endo-glucanase (EG), exo-glucanase (CBH) and β-glucosidase (BG) were investigated and compared with that of FPA under different pH and temperature. The results indicated that CBH and FPA were more sensitive to pH and temperature than EG and BG and the stability of CBH was very similar to that of FPA under the conditions.


Sign in / Sign up

Export Citation Format

Share Document