scholarly journals Analysis of Neural Network Based Language Modeling

Author(s):  
Dr. Karrupusamy P.

The fundamental and core process of the natural language processing is the language modelling usually referred as the statistical language modelling. The language modelling is also considered to be vital in the processing the natural languages as the other chores such as the completion of sentences, recognition of speech automatically, translations of the statistical machines, and generation of text and so on. The success of the viable natural language processing totally relies on the quality of the modelling of the language. In the previous spans the research field such as the linguistics, psychology, speech recognition, data compression, neuroscience, machine translation etc. As the neural network are the very good choices for having a quality language modelling the paper presents the analysis of neural networks in the modelling of the language. Utilizing some of the dataset such as the Penn Tree bank, Billion Word Benchmark and the Wiki Test the neural network models are evaluated on the basis of the word error rate, perplexity and the bilingual evaluation under study scores to identify the optimal model.

Author(s):  
Dr. Karrupusamy P.

The fundamental and core process of the natural language processing is the language modelling usually referred as the statistical language modelling. The language modelling is also considered to be vital in the processing the natural languages as the other chores such as the completion of sentences, recognition of speech automatically, translations of the statistical machines, and generation of text and so on. The success of the viable natural language processing totally relies on the quality of the modelling of the language. In the previous spans the research field such as the linguistics, psychology, speech recognition, data compression, neuroscience, machine translation etc. As the neural network are the very good choices for having a quality language modelling the paper presents the analysis of neural networks in the modelling of the language. Utilizing some of the dataset such as the Penn Tree bank, Billion Word Benchmark and the Wiki Test the neural network models are evaluated on the basis of the word error rate, perplexity and the bilingual evaluation under study scores to identify the optimal model.


2016 ◽  
Vol 57 ◽  
pp. 345-420 ◽  
Author(s):  
Yoav Goldberg

Over the past few years, neural networks have re-emerged as powerful machine-learning models, yielding state-of-the-art results in fields such as image recognition and speech processing. More recently, neural network models started to be applied also to textual natural language signals, again with very promising results. This tutorial surveys neural network models from the perspective of natural language processing research, in an attempt to bring natural-language researchers up to speed with the neural techniques. The tutorial covers input encoding for natural language tasks, feed-forward networks, convolutional networks, recurrent networks and recursive networks, as well as the computation graph abstraction for automatic gradient computation.


2021 ◽  
pp. 1-12
Author(s):  
Yonatan Belinkov

Abstract Probing classifiers have emerged as one of the prominent methodologies for interpreting and analyzing deep neural network models of natural language processing. The basic idea is simple —a classifier is trained to predict some linguistic property from a model's representations—and has been used to examine a wide variety of models and properties. However, recent studies have demonstrated various methodological limitations of this approach. This article critically reviews the probing classifiers framework, highlighting their promises, shortcomings, and advances.


2019 ◽  
Vol 26 (3) ◽  
pp. 1777-1794
Author(s):  
Zoie Shui-Yee Wong ◽  
HY So ◽  
Belinda SC Kwok ◽  
Mavis WS Lai ◽  
David TF Sun

Medication errors often occurred due to the breach of medication rights that are the right patient, the right drug, the right time, the right dose and the right route. The aim of this study was to develop a medication-rights detection system using natural language processing and deep neural networks to automate medication-incident identification using free-text incident reports. We assessed the performance of deep neural network models in classifying the Advanced Incident Reporting System reports and compared the models’ performance with that of other common classification methods (including logistic regression, support vector machines and the decision-tree method). We also evaluated the effects on prediction outcomes of several deep neural network model settings, including number of layers, number of neurons and activation regularisation functions. The accuracy of the models was measured at 0.9 or above across model settings and algorithms. The average values obtained for accuracy and area under the curve were 0.940 (standard deviation: 0.011) and 0.911 (standard deviation: 0.019), respectively. It is shown that deep neural network models were more accurate than the other classifiers across all of the tested class labels (including wrong patient, wrong drug, wrong time, wrong dose and wrong route). The deep neural network method outperformed other binary classifiers and our default base case model, and parameter arguments setting generally performed well for the five medication-rights datasets. The medication-rights detection system developed in this study successfully uses a natural language processing and deep-learning approach to classify patient-safety incidents using the Advanced Incident Reporting System reports, which may be transferable to other mandatory and voluntary incident reporting systems worldwide.


2017 ◽  
Author(s):  
Falgun H. Chokshi ◽  
Bonggun Shin ◽  
Timothy Lee ◽  
Andrew Lemmon ◽  
Sean Necessary ◽  
...  

AbstractBackground and PurposeTo evaluate the accuracy of non-neural and neural network models to classify five categories (classes) of acute and communicable findings on unstructured head computed tomography (CT) reports.Materials and MethodsThree radiologists annotated 1,400 head CT reports for language indicating the presence or absence of acute communicable findings (hemorrhage, stroke, hydrocephalus, and mass effect). This set was used to train, develop, and evaluate a non-neural classifier, support vector machine (SVM), in comparisons to two neural network models using convolutional neural networks (CNN) and neural attention model (NAM) Inter-rater agreement was computed using kappa statistics. Accuracy, receiver operated curves, and area under the curve were calculated and tabulated. P-values < 0.05 was significant and 95% confidence intervals were computed.ResultsRadiologist agreement was 86-94% and Cohen’s kappa was 0.667-0.762 (substantial agreement). Accuracies of the CNN and NAM (range 0.90-0.94) were higher than SVM (range 0.88-0.92). NAM showed relatively equal accuracy with CNN for three classes, severity, mass effect, and hydrocephalus, higher accuracy for the acute bleed class, and lower accuracy for the acute stroke class. AUCs of all methods for all classes were above 0.92.ConclusionsNeural network models (CNN & NAM) generally had higher accuracies compared to the non-neural models (SVM) and have a range of accuracies that comparable to the inter-annotator agreement of three neuroradiologists.The NAM method adds ability to hold the algorithm accountable for its classification via heat map generation, thereby adding an auditing feature to this neural network.AbbreviationsNLPNatural Language ProcessingCNNConvolutional Neural NetworkNAMNeural Attention ModelHERElectronic Health Record


2020 ◽  
pp. 1-22 ◽  
Author(s):  
D. Sykes ◽  
A. Grivas ◽  
C. Grover ◽  
R. Tobin ◽  
C. Sudlow ◽  
...  

Abstract Using natural language processing, it is possible to extract structured information from raw text in the electronic health record (EHR) at reasonably high accuracy. However, the accurate distinction between negated and non-negated mentions of clinical terms remains a challenge. EHR text includes cases where diseases are stated not to be present or only hypothesised, meaning a disease can be mentioned in a report when it is not being reported as present. This makes tasks such as document classification and summarisation more difficult. We have developed the rule-based EdIE-R-Neg, part of an existing text mining pipeline called EdIE-R (Edinburgh Information Extraction for Radiology reports), developed to process brain imaging reports, (https://www.ltg.ed.ac.uk/software/edie-r/) and two machine learning approaches; one using a bidirectional long short-term memory network and another using a feedforward neural network. These were developed on data from the Edinburgh Stroke Study (ESS) and tested on data from routine reports from NHS Tayside (Tayside). Both datasets consist of written reports from medical scans. These models are compared with two existing rule-based models: pyConText (Harkema et al. 2009. Journal of Biomedical Informatics42(5), 839–851), a python implementation of a generalisation of NegEx, and NegBio (Peng et al. 2017. NegBio: A high-performance tool for negation and uncertainty detection in radiology reports. arXiv e-prints, p. arXiv:1712.05898), which identifies negation scopes through patterns applied to a syntactic representation of the sentence. On both the test set of the dataset from which our models were developed, as well as the largely similar Tayside test set, the neural network models and our custom-built rule-based system outperformed the existing methods. EdIE-R-Neg scored highest on F1 score, particularly on the test set of the Tayside dataset, from which no development data were used in these experiments, showing the power of custom-built rule-based systems for negation detection on datasets of this size. The performance gap of the machine learning models to EdIE-R-Neg on the Tayside test set was reduced through adding development Tayside data into the ESS training set, demonstrating the adaptability of the neural network models.


Author(s):  
Huei-Ling Lai ◽  
Hsiao-Ling Hsu ◽  
Jyi-Shane Liu ◽  
Chia-Hung Lin ◽  
Yanhong Chen

While word sense disambiguation (WSD) has been extensively studied in natural language processing, such a task in low-resource languages still receives little attention. Findings based on a few dominant languages may lead to narrow applications. A language-specific WSD system is in need to implement in low-resource languages, for instance, in Taiwan Hakka. This study examines the performance of DNN and Bi-LSTM in WSD tasks on polysemous BUNin Taiwan Hakka. Both models are trained and tested on a small amount of hand-crafted labeled data. Two experiments are designed with four kinds of input features and two window spans to explore what information is needed for the models to achieve their best performance. The results show that to achieve the best performance, DNN and Bi-LSTM models prefer different kinds of input features and window spans.


2020 ◽  
Vol 12 (12) ◽  
pp. 218
Author(s):  
Dario Onorati ◽  
Pierfrancesco Tommasino ◽  
Leonardo Ranaldi ◽  
Francesca Fallucchi ◽  
Fabio Massimo Zanzotto

The dazzling success of neural networks over natural language processing systems is imposing an urgent need to control their behavior with simpler, more direct declarative rules. In this paper, we propose Pat-in-the-Loop as a model to control a specific class of syntax-oriented neural networks by adding declarative rules. In Pat-in-the-Loop, distributed tree encoders allow to exploit parse trees in neural networks, heat parse trees visualize activation of parse trees, and parse subtrees are used as declarative rules in the neural network. Hence, Pat-in-the-Loop is a model to include human control in specific natural language processing (NLP)-neural network (NN) systems that exploit syntactic information, which we will generically call Pat. A pilot study on question classification showed that declarative rules representing human knowledge, injected by Pat, can be effectively used in these neural networks to ensure correctness, relevance, and cost-effective.


Author(s):  
Yijun Xiao ◽  
William Yang Wang

Reliable uncertainty quantification is a first step towards building explainable, transparent, and accountable artificial intelligent systems. Recent progress in Bayesian deep learning has made such quantification realizable. In this paper, we propose novel methods to study the benefits of characterizing model and data uncertainties for natural language processing (NLP) tasks. With empirical experiments on sentiment analysis, named entity recognition, and language modeling using convolutional and recurrent neural network models, we show that explicitly modeling uncertainties is not only necessary to measure output confidence levels, but also useful at enhancing model performances in various NLP tasks.


Humans have built broad models of expressing their thoughts via several appliances. The internet has not only become a credible method for expressing one's thoughts, but is also rapidly becoming the single largest means of doing so. In this context, one area of focus is the study of negative online behaviors of users like, toxic comments that are threat, obscenity, insults and abuse. The task of identifying and removing toxic communication from public forums is critical. The undertaking of analyzing a large corpus of comments is infeasible for human moderators. Our approach is to use Natural Language Processing (NLP) techniques to provide an efficient and accurate tool to detect online toxicity. We apply TF-IDF feature extraction technique, Neural Network models to tackle a toxic comment classification problem with a labeled dataset from Wikipedia Talk Page.


Sign in / Sign up

Export Citation Format

Share Document