Shoreline change at Fort Matanzas National Monument: 2020–2021 data summary

2022 ◽  
Author(s):  
Elizabeth Schmidt

In 2020 and 2021 the Southeast Coast Network (SECN) collected shoreline data at Fort Matanzas National Monument as a part of the NPS Vital Signs Monitoring Program. Monitoring was conducted following methods developed by the National Park Service Northeast Barrier Coast Network and consisted of mapping the high tide swash line using a global positioning system (GPS) unit in the spring of each year (Psuty et al. 2010). Shoreline change was calculated using the Digital Shoreline Analysis System (DSAS) developed by USGS (Theiler et al. 2008). Key findings from this effort: A mean of 2,255.23 meters (7,399 feet [ft]) of shoreline were mapped from 2020 to 2021 with a mean horizontal precision of 10.73 centimeters (4.2 inches [in]) at Fort Matanzas National Monument from 2020 to 2021. In the annual shoreline change analysis, the mean shoreline distance change from spring 2020 to spring 2021 was -7.40 meters (-24.3 ft) with a standard deviation of 20.24 meters (66.40 ft). The shoreline change distance ranged from -124.73 to 35.59 meters (-409.1 to 116.7 ft). Two erosion areas and one accretion area were identified in the study area beyond the uncertainty of the data (± 10 meters [32.8 ft]). The annual shoreline change from 2020 to 2021 showed erosion on the east and west sides of A1A where the Matanzas Inlet is located. Overall, the most dynamic area of shoreline change within Fort Matanzas National Monument appeared to be on the east and west side of A1A, along the Matanzas River inlet.

2021 ◽  
Author(s):  
Lisa Baron

In 2018 and 2019 the Southeast Coast Network (SECN), with assistance from park staff, collected long-term shoreline monitoring data at Cape Hatteras National Seashore as part of the National Park Service (NPS) Vital Signs Monitoring Program. Monitoring was conducted following methods developed by the NPS Northeast Coastal and Barrier Network and consisted of mapping the high-tide swash line using a Global Positioning System unit in the spring of each year (Psuty et al. 2010). Shoreline change was calculated using the Digital Shoreline Analysis System (DSAS) developed by the United States Geological Survey (USGS; Himmelstoss et al. 2018). Following the same field methods used for monitoring long-term shoreline change, geospatial data were collected as part of the Hurricane Dorian (or Dorian) Incident Response from September 12–16, 2019. This report summarizes the post-Dorian data and the previous two shoreline data collection efforts (spring 2019 and fall 2018).


Omni-Akuatika ◽  
2020 ◽  
Vol 16 (2) ◽  
pp. 90
Author(s):  
Abdurrahman Al Farrizi ◽  
Ankiq Taofiqurohman ◽  
Subiyanto Subiyanto

Coastal areas, being vulnerable to environmental problems, have one of the most frequent problems which are the change in the shorelines. Shoreline changes, namely abrasions, can cause problems such as land degradations or loss of land in a coastal zone. This problem occurs in many areas, one of which is Pontang Cape. This study aims to determine the distance and rate of shoreline changes that occured in the Cape and its surroundings, as well as explaining the analysis points based on similar studies that had been conducted. This research used ArcMap software and Digital Shoreline Analysis System (DSAS) toolset to determine the distance and rate of shoreline changes for 19 years (1999-2018). Based on the results, there were two shoreline segments where different phenomena of shoreline change took place, namely Banten Bay (accretion) and Pontang Cape-Lontar (abrasion). The most likely causes of changes in the shorelines are sediment runoffs from rivers that lead to bay and sediment transports that affect Banten Bay accretions, while sea sand mining and conversions of mangrove swamps into fishery ponds are factors affecting abrasions in Pontang Cape.Keywords: Abrasion, Accretion, Pontang Cape, Banten Bay, DSAS


2021 ◽  
Vol 10 (1) ◽  
pp. 23
Author(s):  
Kamal Darwish ◽  
Scot Smith

The objective of this study was to provide an assessment of coastline extraction and change analysis using different sensors from three satellites over time. Imagery from Landsat-8 OLI, Sentinel-2A MSI, and PlanetScope-3B were used to detect geomorphological changes along the El-Alamein coastline on the Mediterranean Sea between August 2016 and August 2021. The normalized difference water index (NDWI) was applied to automate, detect and map water bodies based on thresholding techniques and coastline extraction. The extracted coastlines were analyzed using geographic information systems (GIS)-based digital shoreline analysis system (DSAS.v5) model, a GIS software tool for the estimation of shoreline change rates calculated through two statistical techniques: net shoreline movement (NSM) and end point rate (EPR). The results indicate that measuring coastline morphological change using satellite-based imagery depends very much on the resolution of the imagery. It is necessary to tailor the selection of imagery to the accuracy of the measurement needed. Higher resolution imagery such at PlanetScope (3 m) produces higher resolution measurements. However, medium resolution imagery from Landsat may be sufficiently good for objectives requiring less spatial resolution.


2021 ◽  
Vol 15 (3) ◽  
pp. 55-80
Author(s):  
Cheikh Tidiane Koulibaly ◽  
Johnson O. Ayoade

This paper is aimed at analyzing the phenomenon of shoreline retreat in the locality of Rufisque from 1978 to 2018 mainly using geospatial data and field visits. A set of Landsat images from different dates at 10 year intervals was then acquired through the United States Geological Survey platform and shoreline change analysis was run using the Digital Shoreline Analysis System. In addition to that desktop work, interactions with local residents allowed the determination of ongoing adaptation strategies actually in place to cope with coastal erosion. The study showed that Rufisque is subject to serious rates of erosion reaching −19.48 m/year from 1978–1988, close to −8 m/year from 1988–1998, −5.88 m/year from 1998–2008 and −6.67 m/year from 2008–2018. Beside that coastal erosion, it has been noticed that the coastline also experienced in some of its parts cases of accretion reaching 4.94 m/year for 1988–1998, 7.29 m/year from 1998–2008 and 7.68 m/year during the period 2008–2018. In terms of surfaces, Rufisque’ shoreline respectively lost 156.81 ha (1978–1988), 80.55 ha (1988–1998), 6.94 ha (1998–2008), 12.93 ha (2008–2018) and in the same note gained 2.86 ha (1988–1998), 32.51 ha (1998–2008) and 19.16 ha (2008–2018) attesting to the fact that the coastline is subject to both spatiotemporal changes. Finally, this study also reveals that while authorities’ reaction is taking place at much lower pace, local communities are actually using their ingenuity to put in place strategies to tackle coastal erosion.


2018 ◽  
Vol 46 (10) ◽  
pp. 1637-1644 ◽  
Author(s):  
Rakesh Baral ◽  
Subhasis Pradhan ◽  
Rabindro Nath Samal ◽  
Sujit Kumar Mishra

Sign in / Sign up

Export Citation Format

Share Document