Two Results on Ramsey-Turán Theory
Let $f(n)$ be a positive function and $H$ a graph. Denote by $\textbf{RT}(n,H,f(n))$ the maximum number of edges of an $H$-free graph on $n$ vertices with independence number less than $f(n)$. It is shown that $\textbf{RT}(n,K_4+mK_1,o(\sqrt{n\log n}))=o(n^2)$ for any fixed integer $m\geqslant 1$ and $\textbf{RT}(n,C_{2m+1},f(n))=O(f^2(n))$ for any fixed integer $m\geqslant 2$ as $n\to\infty$.
Keyword(s):
2019 ◽
Keyword(s):
2017 ◽
Vol 4
(8)
◽
pp. 25-37
◽
2003 ◽
Vol 7
(4)
◽
pp. 353-359
◽
1994 ◽
Vol 51
(1-2)
◽
pp. 75-83
◽
2008 ◽
Vol 62
(1)
◽
pp. 77-92
◽