User preference will be impacted by other users. To accurately predict mobile user preference, the influence between users is introduced into the prediction model of user preference. First, the mobile social network is constructed according to the interaction behavior of the mobile user, and the influence of the user is calculated according to the topology of the constructed mobile social network and mobile user behavior. Second, the influence between users is calculated according to the user’s influence, the interaction behavior between users, and the similarity of user preferences. When calculating the influence based on the interaction behavior, the context information is considered; the context information and the order of user preferences are considered when calculating the influence based on the similarity of user preferences. The improved collaborative filtering method is then employed to predict mobile user preferences based on the obtained influence between users. Finally, the experiment is executed on the real data set and the integrated data set, and the results show that the proposed method can obtain more accurate mobile user preferences than those of existing methods.