scholarly journals Knockdown of SLC34A2 Inhibits Hepatocellular Carcinoma Cell Proliferation and Invasion

Author(s):  
Yanhua Li ◽  
Xia Chen ◽  
Hong Lu

The gene solute carrier family 34 (sodium phosphate), member 2 (SLC34A2), is a member of the SLC34 family. Increasing evidence suggests that SLC34A2 is involved in the development of many human carcinomas. However, its role in hepatocellular carcinoma (HCC) is still unclear. Therefore, in this study we investigated the role of SLC34A2 in HCC and explored the underlying mechanism. We found that the expression of SLC34A2 is upregulated in HCC cell lines. Knockdown of SLC34A2 obviously inhibited HCC cell proliferation, migration/invasion, and the epithelial‐mesenchymal transition (EMT) phenotype. Furthermore, knockdown of SLC34A2 significantly inhibited the expression of phosphorylated PI3K and AKT in HCC cells. Taken together, these results suggest that knockdown of SLC34A2 inhibits proliferation and migration by suppressing activation of the PI3K/AKT signaling pathway in HCC cells, and SLC34A2 may be a potential therapeutic target for the treatment of HCC.

2019 ◽  
Vol 39 (5) ◽  
Author(s):  
Kun Han ◽  
Chunqi Li ◽  
Xin Zhang ◽  
Liang Shang

AbstractThe long non-coding RNA DUXAP10 has been involved in the development, progression, and metastasis in several human cancers, but its biological function and underlying mechanism in hepatocellular carcinoma (HCC) still undetermined. The present study was proposed to explore the effect of DUXAP10 on the growth and metastasis of HCC cells and the potential mechanisms involved. The results showed that DUXAP10 is dramatically elevated in HCC tumor tissues and cell lines. Knockdown of DUXAP10 by DUXAP10 si-RNA significantly inhibited the cell viability, proliferation and induce the apoptosis of HCC cell line. Meanwhile, inhibition of DUXAP10 attenuates the cell migration, invasion, and epithelial–mesenchymal transition (EMT) process. No significant change of JNK MAPK pathway was detected in DUXAP10 siRNA transfected HCC cell lines. The β-catenin and pAkt levels were decreased in the Hep G2+DUXAP10 siRNA and SMMC7721+DUXAP10 siRNA groups, while the activation of Wnt/β-catenin or PI3K/Akt suppressed the inhibition of DUXAP10 siRNA on cell proliferation and migration. Collectively, DUXAP10 plays a critical role in regulating HCC development, potentially by regulating EMT and cell proliferation through the PI3K/Akt and Wnt/β-catenin signaling. Inhibition of DUXAP10 in HCC HepG2 cells could attenuate the EMT and cell proliferation and invasion. Therefore, DUXAP10 might be a promising therapy target to inhibit the growth of HCC.


2021 ◽  
Vol 15 (2) ◽  
pp. 97-108
Author(s):  
Zheyue Shu ◽  
Feng Gao ◽  
Qi Xia ◽  
Min Zhang

Objective: This study aimed to observe the effect of miR-9-5p and CPEB3 on hepatocellular carcinoma (HCC) cells, and investigate the underlying targeting regulatory mechanism. Materials & methods: Various experiments like CCK-8, colony formation assay, wound healing assay and Transwell were performed for cancer cell activities detection, including cell proliferation, growth activity, migration and invasion. Results: MiR-9-5p was found to be highly expressed in HCC cells, while CPEB3 was poorly expressed (p < 0.05). The overexpression of miR-9-5p and the silencing of CPEB3 both could significantly promote cell proliferation, migration and invasion (p < 0.05). In addition, miR-9-5p could target to downregulate CPEB3 expression, thus accelerating cell proliferation, migration, invasion and epithelial-mesenchymal transition process in HCC. Conclusion: MiR-9-5p can target CPEB3, thereby promoting cell proliferation, migration and invasion in HCC. The axis of miR-9-5p/CPEB3 is expected to become a potential therapeutic target beneficial for HCC patients.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yarong Guo ◽  
Bao Chai ◽  
Junmei Jia ◽  
Mudan Yang ◽  
Yanjun Li ◽  
...  

Abstract Objective Dysregulation of KLF7 participates in the development of various cancers, but it is unclear whether there is a link between HCC and aberrant expression of KLF7. The aim of this study was to investigate the role of KLF7 in proliferation and migration of hepatocellular carcinoma (HCC) cells. Methods CCK8, colony growth, transwell, cell cycle analysis and apoptosis detection were performed to explore the effect of KLF7, VPS35 and Ccdc85c on cell function in vitro. Xenografted tumor growth was used to assess in vivo role of KLF7. Chip-qPCR and luciferase reporter assays were applied to check whether KLF7 regulated VPS35 at transcriptional manner. Co-IP assay was performed to detect the interaction between VPS35 and Ccdc85c. Immunohistochemical staining and qRT-PCR analysis were performed in human HCC sampels to study the clinical significance of KLF7, VPS35 and β-catenin. Results Firstly, KLF7 was highly expressed in human HCC samples and correlated with patients’ differentiation and metastasis status. KLF7 overexpression contributed to cell proliferation and invasion of HCC cells in vitro and in vivo. KLF7 transcriptional activation of VPS35 was necessary for HCC tumor growth and metastasis. Further, co-IP studies revealed that VPS35 could interact with Ccdc85c in HCC cells. Rescue assay confirmed that overexpression of VPS35 and knockdown of Ccdc85c abolished the VPS35-medicated promotion effect on cell proliferation and invasion. Finally, KLF7/VPS35 axis regulated Ccdc85c, which involved in activation of β-catenin signaling pathway, confirmed using β-catenin inhibitor, GK974. Functional studies suggested that downregulation of Ccdc85c partly reversed the capacity of cell proliferation and invasion in HCC cells, which was regulated by VPS35 upregulation. Lastly, there was a positive correlation among KLF7, VPS35 and active-β-catenin in human HCC patients. Conclusion We demonstrated that KLF7/VPS35 axis promoted HCC cell progression by activating Ccdc85c-medicated β-catenin pathway. Targeting this signal axis might be a potential treatment strategy for HCC.


2019 ◽  
Vol 47 (3) ◽  
pp. 1319-1329 ◽  
Author(s):  
Jian Zhang ◽  
Hai Ma ◽  
Liu Yang ◽  
Hongchun Yang ◽  
Zhenxing He

Objectives Overexpression of human trophoblast cell surface antigen 2 (Trop2) has been observed in many cancers; however, its roles in proliferation, apoptosis, migration, and invasion of hepatocellular carcinoma (HCC) remain unclear. Thus, this study aimed to characterize the function of Trop2 in HCC. Methods Trop2 protein expression was detected by immunohistochemistry in HCC tissues. Cell proliferation, apoptosis, and invasion were respectively measured by CCK-8, flow cytometry, Transwell, and wound healing assays. Expression levels of epithelial–mesenchymal transition-related proteins and Trop2 protein in HCC cell lines were detected by western blotting after silencing of the TROP2 gene. Results Trop2 protein was highly expressed in HCC tissues and HCC cell lines. Trop2 mRNA and protein expression levels decreased in HepG2 and HCCLM3 cells after transfection with Trop2 siRNA. Silencing of the TROP2 gene in HepG2 and HCCLM3 cells strongly inhibited cell proliferation and migration, while enhancing cell apoptosis. Investigation of the molecular mechanism revealed that silencing of the TROP2 gene suppressed epithelial–mesenchymal transition of HepG2 and HCCLM3 cells. Conclusions The results of the present study may improve understanding of the role of Trop2 in regulation of cell proliferation and invasion, and may aid in development of novel therapy for HCC.


2021 ◽  
Vol 22 (5) ◽  
Author(s):  
Mennatallah Ghouraba ◽  
Razan Masad ◽  
Eric Mpingirika ◽  
Omnia Abdelraheem ◽  
Rached Zeghlache ◽  
...  

2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Xiaonian Zhu ◽  
Wei Luo ◽  
Chunhua Bei ◽  
Juan Kong ◽  
Shidong Zhang ◽  
...  

Abstract Background Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide, especially in China, with high metastasis and poor prognosis. Recently, as the core component of the polycomb repressive complexes 1 (PRC1), chromobox protein homolog 8 (CBX8) is considered as an oncogene and prognostic marker in HCC. Methods A tissue microarray of 166 paired HCC and adjacent non-tumor samples were collected to identify the relationship between CBX8 and epithelial mesenchymal transition (EMT) associated proteins by Spearman correlation analysis. Knock-down of CBX8 in HCC cells was conducted to detect the biologic functions of CBX8 in HCC metastasis. Results We found out that CBX8 was over-expressed in HCC and its expression was closely related to the metastasis of HCC patients. In addition, knock-down of CBX8 was found to inhibit the invasion and migration ability of HCC cells. Moreover, there was a significant relationship between expression of CBX8 and EMT associated proteins both in HCC cells and tumor tissues. Conclusions Our results indicate that CBX8 promotes metastasis of HCC by inducing EMT process.


2021 ◽  
Vol 7 (6) ◽  
pp. 6499-6510
Author(s):  
Hongjuan Li ◽  
Yaqin Chen ◽  
Chunyan Wu ◽  
Haiyan Zhao ◽  
Xuesong Zhang ◽  
...  

Accumulating reports have identified that long non-coding RNAs (IncRNAs) function as key regulators of tumor initiation and progression. The aim of the current study was to determine the clinical significance and functional role of TINCR in hepatocellular carcinoma (HCC). In the present study, the level of IncRNA TINCR expression was significantly upregulated in HCC tissues compared to adjacent normal tissues. Higher levels of IncRNA TINCR expression were significantly correlated with tumor size and vascular invasion of HCC patients. LncRNA TINCR knockdown inhibited cell proliferation ability, increased the proportion of G1 phase cells, reduced the proportion of S phase cells, and suppressed cell invasion of HCC in vitro. Additionally, IncRNA TINCR knockdown inhibited the HCC cell epithelial-mesenchymal transition (EMT) phenomenon by upregulating E-cadherin and reducing N-cadherin expression. We demonstrated that knockdown of IncRNA reduced tumor growth in vivo. Thus, these results indicated that IncRNA TINCR exhibits a tumor oncogenic role in HCC and inhibition of IncRNA TINCR might serve as a therapeutic target for HCC.


2016 ◽  
Vol 130 (13) ◽  
pp. 1125-1136 ◽  
Author(s):  
Junjie Xiao ◽  
Qi Sun ◽  
Yihua Bei ◽  
Ling Zhang ◽  
Jasmina Dimitrova-Shumkovska ◽  
...  

Hepatocellular carcinoma (HCC) represents a leading cause of deaths worldwide. Novel therapeutic targets for HCC are needed. Phospholipase D (PD) is involved in cell proliferation and migration, but its role in HCC remains unclear. In the present study, we show that PLD1, but not PLD2, was overexpressed in HCC cell lines (HepG2, Bel-7402 and Bel-7404) compared with the normal human L-02 hepatocytes. PLD1 was required for the proliferation, migration and invasion of HCC cells without affecting apoptosis and necrosis, and PLD1 overexpression was sufficient to promote those effects. By using HCC xenograft models, we demonstrated that therapeutic inhibition of PLD1 attenuated tumour growth and epithelial–mesenchymal transition (EMT) in HCC mice. Moreover, PLD1 was found to be highly expressed in tumour tissues of HCC patients. Finally, mTOR (mechanistic target of rapamycin) and Akt (protein kinase B) were identified as critical pathways responsible for the role of PLD1 in HCC cells. Taken together, the present study indicates that PLD1 activation contributes to HCC development via regulation of the proliferation, migration and invasion of HCC cells, as well as promoting the EMT process. These observations suggest that inhibition of PLD1 represents an attractive and novel therapeutic modality for HCC.


Sign in / Sign up

Export Citation Format

Share Document