scholarly journals Sulforaphane: Expected to Become a Novel Antitumor Compound

Author(s):  
Geting Wu ◽  
Yuanliang Yan ◽  
Yangying Zhou ◽  
Yumei Duan ◽  
Shuangshuang Zeng ◽  
...  

Natural products are becoming increasingly popular in a variety of traditional, complementary, and alternative systems due to their potency and slight side effects. Natural compounds have been shown to be effective against many human diseases, especially cancers. Sulforaphane (SFE) is a traditional Chinese herbal medicine. In recent years, an increasing number of studies have been conducted to evaluate the antitumor effect of SFE. The roles of SFE in cancers are mainly through the regulation of potential biomarkers to activate or inhibit related signaling pathways. SFE has exhibited promising inhibitory effects on breast cancer, lung cancer, liver cancer, and other malignant tumors. In this review, we summarized the reports on the activity and functional mechanisms of SFE in cancer treatment and explored the efficacy and toxicity of SFE.

Breast Cancer ◽  
2021 ◽  
Author(s):  
Shu-Lin Huang ◽  
Zhong-Cheng Huang ◽  
Chao-Jie Zhang ◽  
Jing Xie ◽  
Shan-Shan Lei ◽  
...  

Abstract Background Breast cancer (BC) is one of the most common malignant tumors in women. Accumulating studies have been reported that long non-coding RNA (lncRNA) SNHG5 is highly expressed in BC. However, the specific molecular mechanism of SNHG5 in BC is unclear. Methods Gene and protein expressions in BC cell were detected by qRT-PCR and western blotting. The proliferation and cell cycle were measured using colony formation assay and flow cytometry analysis, separately. The glucose consumption and lactate production were determined by using the glucose assay kit and lactate assay kit. A dual-luciferase reporter assay was performed to measure the interaction between miR-299 and SNHG5 or BACH1. Results SNHG5 and BACH1 expressions were increased in BC cell while miR-299 level was decreased. SNHG5 increased BACH1 expression by directly targeting miR-299. SNHG5 silencing or miR-299 overexpression suppressed the proliferation of BC cell, arrested the cell cycle in the G1 cell phase, and decreased the glucose consumption and lactate production of BC cell. However, inhibition of miR-299 or overexpression of BACH1 could reverse the inhibitory effects of sh-SNHG5 on cell proliferation and glycolysis in BC. Conclusion SNHG5 promoted the BC cell growth and glycolysis through up-regulating BACH1 expression via targeting miR-299. These findings may improve the diagnostic and therapeutic approaches to BC.


2019 ◽  
Author(s):  
I Flörkemeier ◽  
TN Steinhauer ◽  
MT van Mackelenbergh ◽  
B Clement ◽  
DO Bauerschlag

2010 ◽  
Vol 30 (2) ◽  
pp. 212-214
Author(s):  
Hong QIAN ◽  
Nong XIAO ◽  
Zhi-feng QIN ◽  
Yan-jun LIU ◽  
Yi-jun SHEN ◽  
...  

2017 ◽  
Vol 63 (1) ◽  
pp. 141-145
Author(s):  
Yuliya Khochenkova ◽  
Eliso Solomko ◽  
Oksana Ryabaya ◽  
Yevgeniya Stepanova ◽  
Dmitriy Khochenkov

The discovery for effective combinations of anticancer drugs for treatment for breast cancer is the actual problem in the experimental chemotherapy. In this paper we conducted a study of antitumor effect of the combination of sunitinib and bortezomib against MDA-MB-231 and SKBR-3 breast cancer cell lines in vitro. We found that bortezomib in non-toxic concentrations can potentiate the antitumor activity of sunitinib. MDA-MB-231 cell line has showed great sensitivity to the combination of bortezomib and sunitinib in vitro. Bortezomib and sunitinib caused reduced expression of receptor tyrosine kinases VEGFR1, VEGFR2, PDGFRa, PDGFRß and c-Kit on HER2- and HER2+ breast cancer cell lines


2018 ◽  
Vol 35 (1) ◽  
pp. 369-374
Author(s):  
Omayma A.R. AbouZaid ◽  
Laila A Rashed ◽  
S. M. El-Sonbaty ◽  
Aboel-Ftouh A. I

2020 ◽  
Vol 28 ◽  
Author(s):  
Fei Shao ◽  
Xiaonan Pang ◽  
Gyeong Hun Baeg

Abstract:: Breast cancer is the most common malignant tumor in women worldwide. Traditional ways of treatment, includ-ing radiotherapy and endocrine therapy, for breast cancer have inevitable side effects. In recent decades, targeted therapies for breast cancer have rapidly advanced and shown a promising future. The JAK/STAT signaling pathway has been shown to play important roles in tumorigenesis, maintenance and metastasis of breast cancer. Hence, many small molecule inhibi-tors of JAK and STAT proteins have been developed. These inhibitors exhibit potent inhibitory effects on breast cancer in both cellular and animal models, and even some of them have already been in clinical trials. This review article discussed the JAK/STAT signal transduction pathway in the pathogenesis of breast cancer, and the potential for the application of JAK/STAT inhibitors in breast cancer treatment.


2021 ◽  
Vol 7 (3) ◽  
pp. 38
Author(s):  
Alexandra Korotaeva ◽  
Danzan Mansorunov ◽  
Natalya Apanovich ◽  
Anna Kuzevanova ◽  
Alexander Karpukhin

Neuroendocrine neoplasms (NEN) are infrequent malignant tumors of a neuroendocrine nature that arise in various organs. They occur most frequently in the lungs, intestines, stomach and pancreas. Molecular diagnostics and prognosis of NEN development are highly relevant. The role of clinical biomarkers can be played by microRNAs (miRNAs). This work is devoted to the analysis of data on miRNA expression in NENs. For the first time, a search for specificity or a community of their functional characteristics in different types of NEN was carried out. Their properties as biomarkers were also analyzed. To date, more than 100 miRNAs have been characterized as differentially expressed and significant for the development of NEN tumors. Only about 10% of the studied miRNAs are expressed in several types of NEN; differential expression of the remaining 90% was found only in tumors of specific localizations. A significant number of miRNAs have been identified as potential biomarkers. However, only a few miRNAs have values that characterized their quality as markers. The analysis demonstrates the predominant specific expression of miRNA in each studied type of NEN. This indicates that miRNA’s functional features are predominantly influenced by the tissue in which they are formed.


Sign in / Sign up

Export Citation Format

Share Document