scholarly journals The Effect Of Addition Of Limestone Powder And Gypsum As Isolator Media On Low Carbon Steel SMAW Welding

Author(s):  
Muh Anhar ◽  
Betti Ses Eka Polonia

Metal connection due to heat with or without the influence of pressure or metallurgical bonds caused by attractive forces between atoms. DIN (Deutsche Industrie Normen) state that metallurgical bonding of metal or guide metal joints in a melted or liquid state. This study aims to determine the effect of limestone powder and gypsum as an insulating medium in SMAW (Shielded metal arc welding) welding. This study using experimental methods with SMAW welding. Welding metal cooled with limestone media has a harder hardness than gypsum and air media, which is limestone has a thermal conductivity value of 3.897 W / mºC. In comparison, gypsum has a thermal conductivity value of 1.39 W/mºC, and air has a thermal conductivity value of 0.023 J/msºC, so limestone is a better insulator than gypsum and air. The greater the conductivity value of the object, the better the thermal conductivity of the metal and the more complicated the weld metal and the lower the thermal conductivity value, the softer the metal hardness, limestone has a thermal conductivity value of 3.897 W / mºC while gypsum has a thermal conductivity value of 1, 39 W / mºC and air have a thermal conductivity value of 0.023 J / msºC, proving that the lower the conductivity value, the hardness of the weld metal is getting softer, but in the HAZ section it proves that the lower the conductivity value, the more complex the hardness in the HAZ section.

2013 ◽  
Vol 845 ◽  
pp. 775-778 ◽  
Author(s):  
Toto Triantoro Budi Wardoyo ◽  
S. Izman ◽  
Denni Kurniawan

Effect of variation of the connection (butt joint) in low carbon steel resistance welding (shielded metal arc welding, SMAW) performance is investigated in this paper. Three types of butt joint was varied: square, single V, and double V. The results from tensile test showed that welded specimens are of similar tensile properties with base metal and one another. When hardness test was performed on weld metal, HAZ, and base metal of each specimen,.it was found that weld metal and HAZ were of higher hardness than the base metal. Specimen with square joint exhibits the highest hardness while specimens with single V and double V joints show similar hardness. Microstructure analysis revealed that weld metal of specimen with square joint is of bainite-martensite phases while weld metal of specimens with single V and double V joints are of ferrite-pearlite phases. This difference in microstructure, and hence in hardness, is related to the corresponding heat input during welding.


2021 ◽  
Vol 12 (2) ◽  
pp. 103
Author(s):  
Sudarsono Sudarsono ◽  
Hidayat Hidayat ◽  
Aminur Aminur ◽  
Sarwo Pranoto ◽  
Prinob Aksar

Welding is one of the methods widely used in the joining of metals for structural elements. One of the factors that influence the strength of welded metals is types of welding joints. Suitability of the type of welding joint with geometries of base metals is required to obtain welded metal products with optimum properties. In this study an attempt is made to investigate mechanical properties of welded metals with two different types of joints (single-V and double-V) using the shielded metal arc welding (SMAW) process. Low carbon steel with bevel angle of 60° was used in this study. Welding process was performed using current of 70 A with a constant welding speed. The flexural properties and uniaxial tensile properties are studied by three-point bending test and uniaxial tensile test respectively. Test results show that the tensile strength and the bending strength of single-V specimens is 521.64 N/mm2 and 525.11 N/mm2 respectively. In addition, the tensile strength and the bending strength of double-V specimens is 517.33 N/mm2 and  504.24 N/mm2 respectively


2021 ◽  
Vol 7 (2) ◽  
pp. 155
Author(s):  
Andika Wisnujati ◽  
Juni Andryansyah

Welding is a very important part of the development and growth of the industry because it has a role in engineering, reparation, and construction. Shielded   Metal   Arc Welding (SMAW) or the conventional arc welding   process is particularly dominant in structural joints, pressure vessels and in maintenance and repair work. In welding, different metals are joined economically and at a much faster rate as compared with other fabrication processes like riveting and casting. The purpose of this research is to find out the cooling media cooler against SMAW smelter tensile strength by using the E6013 electrode. This study uses low carbon steel material that has levels Fe = 98,3%; C = 0,30%, Si = 0,23%. The material is given 75A welding current with cooling variation on the connection result using oil, water, and room temperature. The highest tensile stress value obtained in the oil cooling treatment was 844,76 N/mm2, the highest strain value was obtained on the raw materials of 16%, the highest elasticity value was obtained in the oil cooling treatment of 703.96 N/mm2. According to the research results can be concluded that the variations of cooling media greatly affect the strength of the welding connection.


With the advancement of welding techniques, Arc-welding is one of the most commonly and widely used welding technique for variety of purposes. The underside of welding to be performed makes the molten pool going downward because of gravity vector pulling affects the molten pool. The main purpose of this study is to study how the molten of electrode produced reduce on going downward and produce a good root fusion in overhead position of welding in single V-butt joint with the help of magnetic field on the workpiece. The study of magnet characteristic which includes thebehaviour of molten pool toward magnetic field, the macrostructure and microstructure and its strength should be carried out. Each magnet strength has their own characteristics that affects toward weldment on base metal.As a result, it can be concluded that having a magnetic field applies on base metal A36 low carbon steel may reduce the molten pool from going downward. The selection of a correct magnet strength and welding process may produce good and quality weldment especially in terms of its weld properties and geometry.


2015 ◽  
Vol 813-814 ◽  
pp. 486-490 ◽  
Author(s):  
Amandeep Singh ◽  
Neel Kanth Grover

Welding is basic part of the most modern assembly and manufacturing operations. Shielded metal Arc Welding process has hard facing and fabrication job application due to low cost electrode, increasing alloy transfer efficiency and low dilution with substrate without losing production capacity. SMAW electrode is coated with metal mixture called flux, which on decompose produce gases to restrict weld contamination, generating deoxidizers to disinfect the weld. The choice of electrode for SMAW lies on a number of factors, like weld material, welding direction and the preferred weld properties. The present paper investigate the microstructure and hardness properties of the Low carbon steel pipe welded using shielded metal arc welding with different electrode combinations.


2015 ◽  
Vol 1125 ◽  
pp. 195-199
Author(s):  
Toto Triantoro Budi Wardoyo ◽  
S. Izman ◽  
Safian Sharif ◽  
Hosta Ardhyananta ◽  
Denni Kurniawan

In this paper, Shielded Metal Arc Welding (SMAW) was performed on low carbon steel with three types of butt joint (i.e., square, single V, and double V) and uncapping of the weldment. The welding performance is measured based on the mechanical properties (i.e., strength and hardness). Grain size and microstructure of the weldments were also evaluated. The results show that all tested samples show similar tensile strength, which means there was no significant effect of the type of butt joint type or uncapping. The hardness of the weld metal was found to be slightly higher than that of heat affected zone and base metal, in which both showed similar hardness values. The grain size of the weld metal was also finer than that of heat affected zone and base metal. This trend in hardness and grain size on three regions of the welded sample was the same regardless of the butt joint type and whether the weldment was uncapped or not.


2019 ◽  
Vol 269 ◽  
pp. 03009
Author(s):  
Wahidun Adam ◽  
Pratjojo Dewo ◽  
Winarto Winarto

This paper presents a failure analysis on welding of bucket adapter for an excavator that made of low carbon steel with Ideal Diameter (DI) value 341 and Carbon Equivalent 0.73. The bucket component is stated OK as the final inspection, but four months later found cracked and even it has not been used yet. Adapter mounted to bucket through CO2 gas shielded Gas Metal Arc Welding (GMAW) process, filler metal MG-50 (AWS A5.18 ER70S-G), pre-heating and post-heating. Crack occurred on the boundary of weld metal and adapter casting. The metallurgical examination was conducted in the crack origin and the adapter casting. Nondestructive test (NDT) covered visual and magnetic test (MT), while destructive test (DT) covered fractography, mechanical properties, and Electron Probe Micro Analyzer (EPMA). The investigation resulted in that crack initiated from slag inclusion in the weld metal due to insufficient cleaning on weld joint. The higher hardness of martensite structure in the heat affected zone (HAZ) of adapter indicates high cooling rate that gen erates high residual stress. High stress that caused by insufficient post heating triggered severe crack propagation. By its characteristic, crack is called the cold cracking, delayed cracking, or hydrogen-induced cracking (HIC).


Author(s):  
P. Senthilkumar

The effect of welding current on the tensile properties of low carbon steel welded joint was investigated in this research. In this work mild steel plates were joined by shielded metal arc welding process which is also known as manual metal arc welding used to examine optimum welding current. The welded samples were cut and machined to standard configurations for tensile tests. It was concluded that variation of current affect the tensile properties of the low carbon steel welded joint. As the current increases from 80A to 110A, the ultimate tensile strengths and yeild strength increases. The percentage elongation decreases with increase in welding current but increases at the welding current of 110A.


Sign in / Sign up

Export Citation Format

Share Document