scholarly journals A Study on the Procedure for Constructing Linked Open Data of Records Information by Using Open Source Tool

2017 ◽  
Vol 34 (1) ◽  
pp. 341-371 ◽  
Author(s):  
Seung Rok Ha ◽  
Jin Hee Yim ◽  
Hae-young Rieh
2017 ◽  
Vol 3 ◽  
pp. e121 ◽  
Author(s):  
Bahar Sateli ◽  
Felicitas Löffler ◽  
Birgitta König-Ries ◽  
René Witte

Motivation Scientists increasingly rely on intelligent information systems to help them in their daily tasks, in particular for managing research objects, like publications or datasets. The relatively young research field of Semantic Publishing has been addressing the question how scientific applications can be improved through semantically rich representations of research objects, in order to facilitate their discovery and re-use. To complement the efforts in this area, we propose an automatic workflow to construct semantic user profiles of scholars, so that scholarly applications, like digital libraries or data repositories, can better understand their users’ interests, tasks, and competences, by incorporating these user profiles in their design. To make the user profiles sharable across applications, we propose to build them based on standard semantic web technologies, in particular the Resource Description Framework (RDF) for representing user profiles and Linked Open Data (LOD) sources for representing competence topics. To avoid the cold start problem, we suggest to automatically populate these profiles by analyzing the publications (co-)authored by users, which we hypothesize reflect their research competences. Results We developed a novel approach, ScholarLens, which can automatically generate semantic user profiles for authors of scholarly literature. For modeling the competences of scholarly users and groups, we surveyed a number of existing linked open data vocabularies. In accordance with the LOD best practices, we propose an RDF Schema (RDFS) based model for competence records that reuses existing vocabularies where appropriate. To automate the creation of semantic user profiles, we developed a complete, automated workflow that can generate semantic user profiles by analyzing full-text research articles through various natural language processing (NLP) techniques. In our method, we start by processing a set of research articles for a given user. Competences are derived by text mining the articles, including syntactic, semantic, and LOD entity linking steps. We then populate a knowledge base in RDF format with user profiles containing the extracted competences.We implemented our approach as an open source library and evaluated our system through two user studies, resulting in mean average precision (MAP) of up to 95%. As part of the evaluation, we also analyze the impact of semantic zoning of research articles on the accuracy of the resulting profiles. Finally, we demonstrate how these semantic user profiles can be applied in a number of use cases, including article ranking for personalized search and finding scientists competent in a topic —e.g., to find reviewers for a paper. Availability All software and datasets presented in this paper are available under open source licenses in the supplements and documented at http://www.semanticsoftware.info/semantic-user-profiling-peerj-2016-supplements. Additionally, development releases of ScholarLens are available on our GitHub page: https://github.com/SemanticSoftwareLab/ScholarLens.


Author(s):  
Caio Saraiva Coneglian ◽  
José Eduardo Santarem Segundo

O surgimento de novas tecnologias, tem introduzido meios para a divulgação e a disponibilização das informações mais eficientemente. Uma iniciativa, chamada de Europeana, vem promovendo esta adaptação dos objetos informacionais dentro da Web, e mais especificamente no Linked Data. Desta forma, o presente estudo tem como objetivo apresentar uma discussão acerca da relação entre as Humanidades Digitais e o Linked Open Data, na figura da Europeana. Para tal, utilizamos uma metodologia exploratória e que busca explorar as questões relacionadas ao modelo de dados da Europeana, EDM, por meio do SPARQL. Como resultados, compreendemos as características do EDM, pela utilização do SPARQL. Identificamos, ainda, a importância que o conceito de Humanidades Digitais possui dentro do contexto da Europeana.Palavras-chave: Web semântica. Linked open data. Humanidades digitais. Europeana. EDM.Link: https://periodicos.ufsc.br/index.php/eb/article/view/1518-2924.2017v22n48p88/33031


2020 ◽  
pp. 100001
Author(s):  
Wilko Heitkoetter ◽  
Bruno U. Schyska ◽  
Danielle Schmidt ◽  
Wided Medjroubi ◽  
Thomas Vogt ◽  
...  

2021 ◽  
Vol 11 (5) ◽  
pp. 2405
Author(s):  
Yuxiang Sun ◽  
Tianyi Zhao ◽  
Seulgi Yoon ◽  
Yongju Lee

Semantic Web has recently gained traction with the use of Linked Open Data (LOD) on the Web. Although numerous state-of-the-art methodologies, standards, and technologies are applicable to the LOD cloud, many issues persist. Because the LOD cloud is based on graph-based resource description framework (RDF) triples and the SPARQL query language, we cannot directly adopt traditional techniques employed for database management systems or distributed computing systems. This paper addresses how the LOD cloud can be efficiently organized, retrieved, and evaluated. We propose a novel hybrid approach that combines the index and live exploration approaches for improved LOD join query performance. Using a two-step index structure combining a disk-based 3D R*-tree with the extended multidimensional histogram and flash memory-based k-d trees, we can efficiently discover interlinked data distributed across multiple resources. Because this method rapidly prunes numerous false hits, the performance of join query processing is remarkably improved. We also propose a hot-cold segment identification algorithm to identify regions of high interest. The proposed method is compared with existing popular methods on real RDF datasets. Results indicate that our method outperforms the existing methods because it can quickly obtain target results by reducing unnecessary data scanning and reduce the amount of main memory required to load filtering results.


Sign in / Sign up

Export Citation Format

Share Document