Improving the Stability of Wood-Cutting Saws by Thermoplastic Action on the Distribution of Residual Stresses in the Blade

Author(s):  
V.I. Melekhov ◽  
◽  
I.I. Solovev ◽  
T.V. Tyurikova ◽  
N.V. Ponomareva

The saw stability in operation defines the ability of the saw blade to resist the forces acting on it in the plane of greatest rigidity. The saw can work reliably only in case of maintaining stable balance, which is achieved through the creation of normalized residual stresses in certain zones of the saw blade by different methods. The stresses balance the forces of external influences. Compressive stresses are created in the central part of the blade to make the circular saw operational. These stresses compensate the forces of centrifugal acceleration, temperature heating of individual zones of the saw blade, external longitudinal and transverse bending forces arising in material processing. In practice, the creation of normalized stresses in the saw disk is traditionally carried out only by local mechanical contact action (forging, rolling) of the saw blade tool on the steel saw blade. It is proposed to form the stressed state of the disk by thermophysical action instead of the traditional mechanical processing of the saw blade. The thermophysical action involves the creation of normalized residual stresses in the saw blade by the concentrated thermal exposure to local differently directed narrow-band zones of straight or deflected shape, mainly radial or along concentric traces, controlling the process in real time. A new approach to the formation of residual stress fields in the saw blade by thermoplastic action enables to radically change the settingup procedure of the circular saw, ensuring its stability in operation.

2014 ◽  
Vol 614 ◽  
pp. 32-35 ◽  
Author(s):  
Ming Song Zhang ◽  
Yi Zhang ◽  
Jian Jun Ke ◽  
Xiao Wei Li ◽  
Lian Bing Cheng

The finite element method was used to study tangential roller method impact on the stability of circular saw blade. Using 30 ° cyclic symmetric model is analyzed. The results show that the tension of the saw blade is not the same, and tensioning effect is different, when the tangential roller pressure is not same. At the same time, after tangential roller, the face run out of saw blade is small, which show that the smoothness of tangential roller is better.


2021 ◽  
Author(s):  
Nikolai Jujukin

Rip-sawing following the curvature of a crooked log means advantages for yield. However, the possibility to saw in a narrow curve with a circular saw blade is limited because of the inherently flat geometry of circular saw blades. For a double arbour circular saw the situation is even more problematic because the two blades have a certain overlap and thus, the two arbours are not positioned in the same horizontal position. In this study, a theoretical geometrical study of the creation of a kerf with a single circular saw blade and with a double arbour circular saw with two saw blades was examined. Results for stiff saw blades show that the kerfs become in general curved and inclined (tilted) in the vertical direction and also that the width of the kerfs for double arbour saws becomes wider at the top and bottom of the cant than in the middle. Additionally, the sawn boards obtain varying thickness along their width because of the varying kerf width. A comparison with experimental thickness data from four test sawings at a sawmill indicates that the theoretical results are valid and that curve sawn boards become thinner than straight sawn boards.


2014 ◽  
Vol 996 ◽  
pp. 568-573 ◽  
Author(s):  
Johannes Preußner ◽  
Sabine Oeser ◽  
Wulf Pfeiffer ◽  
André Temmler ◽  
Edgar Willenborg

A new approach to structure metallic surfaces with laser radiation is structuring by remelting. In this process no material is removed but reallocated by melting. The laser power was adapted linearly to the increasing laser beam diameter for laser remelted (polished) samples. A carbon depleted area could be found close to the remelted zone accompanied with a local minimum in hardness. The surface residual stresses tend from tensile to compressive with increasing laser beam diameter/laser power and number of repetitions for laser structured and laser remelted samples. The residual stresses are a result of combined shrinkage (tensile) and transformation (compressive) stresses.


2018 ◽  
Vol 210 ◽  
pp. 04031
Author(s):  
Ondřej Bílek ◽  
Oldřich Šuba ◽  
Jitka Bad’urová

The paper deals with the evaluation of the static stiffness and strength, which are critical parameters affecting the stability of the machining process but also the safety and durability of the wood cutting tools. Circular saw blade models for the purpose of computer numerical simulation were proposed using finite element methods, and verified in earlier research. Deformation response was observed, depending on the input parameters correlating to the saw blade woodworking conditions. The strength of the saw blade was compared with the different clamping methods and different thickness of the circular saw blade. An article gives a disturbing finding how minor change in the quality of the circular saw blade clamping, specifically one degree of misalignment, leads to critical states and probable cause of damage.


Author(s):  
Hermann Maderbacher ◽  
Manfred Pölzl

In the petrochemical industry, in particular for LDPE (Low-Density-Poly-Ethylene) and EVA-processes (Ethylene-Vinyl-Acetate), high strength quenched and tempered steels are used for seamless tubes subjected to ultra-high pressure. The high safety demands at pressures up to 4000bar require besides high fracture toughness and static strength also high fatigue endurance. The fatigue performance can be significantly impoved by the use of autofrettage. In this case residual compressive stresses are generated with simultaneous material work-hardening by targeted plastic deformation in the area of the inner wall of the tube. The positive effect of autofrettage mainly depends on the level of residual compressive stress. The maximum magnitude of these compressive stresses is always smaller than the yield strength of the material in tensile direction, even if the autofrettage level is increased. The amount by what this stress is smaller than the material yield strength depends on the characteristic of the so-called Bauschinger-effect, or on the kinematic hardening behavior of the material. The target of the present work is to investigate the stability of residual stresses from autofrettage and their influence on the service life of high pressure tubes under cyclic internal pressure loading. For this purpose, in the first part, the quantitative character of the Bauschinger effect for a high strength quenched and tempered steel is determined by means of specimen tests. In the next step, the influence of the Bauschinger-effect on the resulting residual compressive stresses in a tube-like specimen is investigated. Autofrettage tests are performed on these specimens equipped with strain gages. In the second part of the work, the results of fatigue tests of the mentioned tube-like specimen are compared with the calculated fatigue endurance according to Division 3, Section VIII of the ASME Pressure Vessel Code (BPVC). Calculations are performed, which once use the residual stress correction for reverse yielding according to ASME Code and once consider the actual residual stresses from tests and simulation.


2006 ◽  
Vol 312 ◽  
pp. 3-8
Author(s):  
Ho Sung Kim ◽  
Nam Ho Kim

Toughening of thermosets by creation of residual compressive stresses around microspheres is studied. Expandable hollow micro-spheres containing liquefied gas were used for the creation of residual compressive stresses. Microscopic compressive residual stresses around the micro-spheres in the vicinity of the crack tip were graphically analysed and related to macroscopic mechanical behaviour for mode I fracture. It was confirmed that toughening was due to residual compressive stresses rather post-cure effect.


Author(s):  
A. G. Korchunov ◽  
E. M. Medvedeva ◽  
E. M. Golubchik

The modern construction industry widely uses reinforced concrete structures, where high-strength prestressing strands are used. Key parameters determining strength and relaxation resistance are a steel microstructure and internal stresses. The aim of the work was a computer research of a stage-by-stage formation of internal stresses during production of prestressing strands of structure 1х7(1+6), 12.5 mm diameter, 1770 MPa strength grade, made of pearlitic steel, as well as study of various modes of mechanical and thermal treatment (MTT) influence on their distribution. To study the effect of every strand manufacturing operation on internal stresses of its wires, the authors developed three models: stranding and reducing a 7-wire strand; straightening of a laid strand, stranding and MTT of a 7-wire strand. It was shown that absolute values of residual stresses and their distribution in a wire used for strands of a specified structure significantly influence performance properties of strands. The use of MTT makes it possible to control in a wide range a redistribution of residual stresses in steel resulting from drawing and strand laying processes. It was established that during drawing of up to 80% degree, compressive stresses of 1100-1200 MPa degree are generated in the central layers of wire. The residual stresses on the wire surface accounted for 450-500 MPa and were tension in nature. The tension within a range of 70 kN to 82 kN combined with a temperature range of 360-380°С contributes to a two-fold decrease in residual stresses both in the central and surface layers of wire. When increasing temperature up to 400°С and maintaining the tension, it is possible to achieve maximum balance of residual stresses. Stranding stresses, whose high values entail failure of lay length and geometry of the studied strand may be fully eliminated only at tension of 82 kN and temperature of 400°С. Otherwise, stranding stresses result in opening of strands.


2020 ◽  
Author(s):  
Laurent Sévery ◽  
Jacek Szczerbiński ◽  
Mert Taskin ◽  
Isik Tuncay ◽  
Fernanda Brandalise Nunes ◽  
...  

The strategy of anchoring molecular catalysts on electrode surfaces combines the high selectivity and activity of molecular systems with the practicality of heterogeneous systems. The stability of molecular catalysts is, however, far less than that of traditional heterogeneous electrocatalysts, and therefore a method to easily replace anchored molecular catalysts that have degraded could make such electrosynthetic systems more attractive. Here, we apply a non-covalent “click” chemistry approach to reversibly bind molecular electrocatalysts to electrode surfaces via host-guest complexation with surface-anchored cyclodextrins. The host-guest interaction is remarkably strong and allows the flow of electrons between the electrode and the guest catalyst. Electrosynthesis in both organic and aqueous media was demonstrated on metal oxide electrodes, with stability on the order of hours. The catalytic surfaces can be recycled by controlled release of the guest from the host cavities and readsorption of fresh guest. This strategy represents a new approach to practical molecular-based catalytic systems.


2021 ◽  
Vol 5 (2) ◽  
pp. 55
Author(s):  
Robert Zmich ◽  
Daniel Meyer

Knowledge of the relationships between thermomechanical process loads and the resulting modifications in the surface layer enables targeted adjustments of the required surface integrity independent of the manufacturing process. In various processes with thermomechanical impact, thermal and mechanical loads act simultaneously and affect each other. Thus, the effects on the modifications are interdependent. To gain a better understanding of the interactions of the two loads, it is necessary to vary thermal and mechanical loads independently. A new process of laser-combined deep rolling can fulfil exactly this requirement. The presented findings demonstrate that thermal loads can support the generation of residual compressive stresses to a certain extent. If the thermal loads are increased further, this has a negative effect on the surface layer and the residual stresses are shifted in the direction of tension. The results show the optimum range of thermal loads to further increase the compressive residual stresses in the surface layer and allow to gain a better understanding of the interactions between thermal and mechanical loads.


2021 ◽  
Vol 83 (3) ◽  
Author(s):  
Ginger Egberts ◽  
Fred Vermolen ◽  
Paul van Zuijlen

AbstractTo deal with permanent deformations and residual stresses, we consider a morphoelastic model for the scar formation as the result of wound healing after a skin trauma. Next to the mechanical components such as strain and displacements, the model accounts for biological constituents such as the concentration of signaling molecules, the cellular densities of fibroblasts and myofibroblasts, and the density of collagen. Here we present stability constraints for the one-dimensional counterpart of this morphoelastic model, for both the continuous and (semi-) discrete problem. We show that the truncation error between these eigenvalues associated with the continuous and semi-discrete problem is of order $${{\mathcal {O}}}(h^2)$$ O ( h 2 ) . Next we perform numerical validation to these constraints and provide a biological interpretation of the (in)stability. For the mechanical part of the model, the results show the components reach equilibria in a (non) monotonic way, depending on the value of the viscosity. The results show that the parameters of the chemical part of the model need to meet the stability constraint, depending on the decay rate of the signaling molecules, to avoid unrealistic results.


Sign in / Sign up

Export Citation Format

Share Document