Carbon tax under the Clean Development Mechanism: a unique approach for reducing greenhouse gas emissions in developing countries

2009 ◽  
Vol 9 (2) ◽  
pp. 139-154 ◽  
Author(s):  
GOVINDA R. TIMILSINA
2002 ◽  
Vol 5 (2) ◽  
pp. 413-429 ◽  
Author(s):  
Harald Winkler ◽  
Steve Thorne

Projects implemented under the Clean Development Mechanism (COM) need to establish a baseline. The baselines is a projection of greenhouse gas emissions that would have occurred without the project. Establishing baselines that allow for sustainable development through COM projects is a key challenge, especially in poor communities. The COM rules explicitly allow for baselines that account for emissions "above current levels due to specific circumstances of host parties". This provision lends support to crediting of growth in demand for energy services where it is currently suppressed as a result of poverty and/or lack of infrastructure or suppressed demand. The question is whether the existing level of consumption is the baseline or the future expected level of consumption including "development" advances in provision of energy services and as a result of poverty alleviation is the baseline. Or should development be allowed to get dirty before it qualifies to become clean? The paper presents a baseline methodology that provides opportunities for suppressed demand to be predicted and counted.


2013 ◽  
Vol 20 (1) ◽  
pp. 1-6 ◽  
Author(s):  
Stephen M. Ogle ◽  
Lydia Olander ◽  
Lini Wollenberg ◽  
Todd Rosenstock ◽  
Francesco Tubiello ◽  
...  

Author(s):  
Sam Meng ◽  
Mahinda Siriwardana ◽  
Judith McNeill

Reductions in greenhouse gas emissions are essential to reducing the rate and scale of anthropogenic climate change to levels that can sustain the planet’s biosphere. A carbon tax is a policy measure that is designed to reduce greenhouse gas emissions by increasing the prices of the highest carbon-polluting goods and services in an economy, thus encouraging substitution towards resultant relatively cheaper and less-polluting goods where possible. When Australia introduced such a tax in 2012, there was a fear that it could threaten the resources boom, considered the engine of Australian economic growth in recent years. By employing a computable general equilibrium model and an environmentally-extended Social Accounting Matrix, this paper demonstrates the effects of a carbon tax on the resources sector. The modelled results show that, in a flexible exchange rate regime, all resources within the sector will be affected negatively but to different degrees. The brown coal sector will be the hardest hit, with a 25.74 per cent decrease in output, 52.94 per cent decrease in employment and 89.37 per cent decrease in profitability. However, other resources in the sector would be only mildly affected. From the point of view of sustainability, the most significant results are that, under the carbon tax, the resources sector contributes considerably to the carbon emission reduction target of Australia. Given that brown coal accounts for only a small portion of the resources sector, it is reasonable to suggest that a carbon tax would not significantly affect the overall performance of the sector.


2019 ◽  
Vol 11 (16) ◽  
pp. 4395
Author(s):  
Andualem Telaye Mengistu ◽  
Pablo Benitez ◽  
Seneshaw Tamru ◽  
Haileselassie Medhin ◽  
Michael Toman

This study uses a Computable General Equilibrium model to analyze policy scenarios for a carbon tax on greenhouse gas emissions from petroleum fuels and kerosene in Ethiopia. The carbon tax starts at $5 per ton of carbon dioxide in 2018 and rises to $30 per ton in 2030; these rates are translated into taxes on the different energy types covered, depending on their carbon contents. Different scenarios examine the impacts with revenue recycling through a uniform sales tax reduction, reduction of labor income tax, reduction of business income tax, direct transfer back to households, and use by the government to reduce debt. Because petroleum fuels and kerosene are a relatively small part of the Ethiopian economy, the carbon tax has small impacts on overall economic activity and greenhouse gas emissions. In proportional terms, however, the impact on greenhouse gas emissions from these energy sources is notable, depending on the recycling scenario. The assumed carbon tax trajectory also can raise significant revenue—up to $800 million per year by 2030. The impacts on the poor through increased cost of living are not that large, since the share of the poor in total use of the taxed energy types is small. In terms of induced income effects through employment changes, urban households tend to experience more impacts than rural households, but the results also depend on the household skill level and the revenue recycling scenario.


Sign in / Sign up

Export Citation Format

Share Document