Clinical Experience with the Words-in-Noise Test on 3430 Veterans: Comparisons with Pure-Tone Thresholds and Word Recognition in Quiet

2011 ◽  
Vol 22 (07) ◽  
pp. 405-423 ◽  
Author(s):  
Richard H. Wilson

Background: Since the 1940s, measures of pure-tone sensitivity and speech recognition in quiet have been vital components of the audiologic evaluation. Although early investigators urged that speech recognition in noise also should be a component of the audiologic evaluation, only recently has this suggestion started to become a reality. This report focuses on the Words-in-Noise (WIN) Test, which evaluates word recognition in multitalker babble at seven signal-to-noise ratios and uses the 50% correct point (in dB SNR) calculated with the Spearman-Kärber equation as the primary metric. The WIN was developed and validated in a series of 12 laboratory studies. The current study examined the effectiveness of the WIN materials for measuring the word-recognition performance of patients in a typical clinical setting. Purpose: To examine the relations among three audiometric measures including pure-tone thresholds, word-recognition performances in quiet, and word-recognition performances in multitalker babble for veterans seeking remediation for their hearing loss. Research Design: Retrospective, descriptive. Study Sample: The participants were 3430 veterans who for the most part were evaluated consecutively in the Audiology Clinic at the VA Medical Center, Mountain Home, Tennessee. The mean age was 62.3 yr (SD = 12.8 yr). Data Collection and Analysis: The data were collected in the course of a 60 min routine audiologic evaluation. A history, otoscopy, and aural-acoustic immittance measures also were included in the clinic protocol but were not evaluated in this report. Results: Overall, the 1000–8000 Hz thresholds were significantly lower (better) in the right ear (RE) than in the left ear (LE). There was a direct relation between age and the pure-tone thresholds, with greater change across age in the high frequencies than in the low frequencies. Notched audiograms at 4000 Hz were observed in at least one ear in 41% of the participants with more unilateral than bilateral notches. Normal pure-tone thresholds (≤20 dB HL) were obtained from 6% of the participants. Maximum performance on the Northwestern University Auditory Test No. 6 (NU-6) in quiet was ≥90% correct by 50% of the participants, with an additional 20% performing at ≥80% correct; the RE performed 1–3% better than the LE. Of the 3291 who completed the WIN on both ears, only 7% exhibited normal performance (50% correct point of ≤6 dB SNR). Overall, WIN performance was significantly better in the RE (mean = 13.3 dB SNR) than in the LE (mean = 13.8 dB SNR). Recognition performance on both the NU-6 and the WIN decreased as a function of both pure-tone hearing loss and age. There was a stronger relation between the high-frequency pure-tone average (1000, 2000, and 4000 Hz) and the WIN than between the pure-tone average (500, 1000, and 2000 Hz) and the WIN. Conclusions: The results on the WIN from both the previous laboratory studies and the current clinical study indicate that the WIN is an appropriate clinic instrument to assess word-recognition performance in background noise. Recognition performance on a speech-in-quiet task does not predict performance on a speech-in-noise task, as the two tasks reflect different domains of auditory function. Experience with the WIN indicates that word-in-noise tasks should be considered the “stress test” for auditory function.

2008 ◽  
Vol 19 (07) ◽  
pp. 548-556 ◽  
Author(s):  
Richard H. Wilson ◽  
Wendy B. Cates

Background: The Speech Recognition in Noise Test (SPRINT) is a word-recognition instrument that presents the 200 Northwestern University Auditory Test No. 6 (NU-6) words binaurally at 50 dB HL in a multitalker babble at a 9 dB signal-to-noise ratio (S/N) (Cord et al, 1992). The SPRINT was developed by and used by the Army as a more valid predictor of communication abilities (than pure-tone thresholds or word-recognition in quiet) for issues involving fitness for duty from a hearing perspective of Army personnel. The Words-in-Noise test (WIN) is a slightly different word-recognition task in a fixed level multitalker babble with 10 NU-6 words presented at each of 7 S/N from 24 to 0 dB S/N in 4 dB decrements (Wilson, 2003; Wilson and McArdle, 2007). For the two instruments, both the babble and the speakers of the words are different. The SPRINT uses all 200 NU-6 words, whereas the WIN uses a maximum of 70 words. Purpose: The purpose was to compare recognition performances by 24 young listeners with normal hearing and 48 older listeners with sensorineural hearing on the SPRINT and WIN protocols. Research Design: A quasi-experimental, mixed model design was used. Study Sample: The 24 young listeners with normal hearing (19 to 29 years, mean = 23.3 years) were from the local university and had normal hearing (≤20 dB HL; American National Standards Institute, 2004) at the 250–8000 Hz octave intervals. The 48 older listeners with sensorineural hearing loss (60 to 82 years, mean = 69.9 years) had the following inclusion criteria: (1) a threshold at 500 Hz between 15 and 30 dB HL, (2) a threshold at 1000 Hz between 20 and 40 dB HL, (3) a three-frequency pure-tone average (500, 1000, and 2000 Hz) of ≤40 dB HL, (4) word-recognition scores in quiet ≥40%, and (5) no history of middle ear or retrocochlear pathology as determined by an audiologic evaluation. Data Collection and Analysis: The speech materials were presented bilaterally in the following order: (1) the SPRINT at 50 dB HL, (2) two half lists of NU-6 words in quiet at 60 dB HL and 80 dB HL, and (3) the two 35-word lists of the WIN materials with the multitalker babble fixed at 60 dB HL. Data collection occurred during a 40–60 minute session. Recognition performances on each stimulus word were analyzed. Results: The listeners with normal hearing obtained 92.5% correct on the SPRINT with a 50% point on the WIN of 2.7 dB S/N. The listeners with hearing loss obtained 65.3% correct on the SPRINT and a WIN 50% point at 12.0 dB S/N. The SPRINT and WIN were significantly correlated (r = −0.81, p < .01), indicating that the SPRINT had good concurrent validity. The high-frequency, pure-tone average (1000, 2000, 4000 Hz) had higher correlations with the SPRINT, WIN, and NU-6 in quiet than did the traditional three-frequency pure-tone average (500, 1000, 2000 Hz). Conclusions: Graphically and numerically the SPRINT and WIN were highly related, which is indicative of good concurrent validity of the SPRINT.


Author(s):  
E McCarty Walsh ◽  
D R Morrison ◽  
W J McFeely

Abstract Objectives This study aimed to evaluate hearing outcomes and device safety in a large, single-surgeon experience with the totally implantable active middle-ear implants. Methods This was a retrospective case series review of 116 patients with moderate-to-severe sensorineural hearing loss undergoing implantation of active middle-ear implants. Results Mean baseline unaided pure tone average improved from 57.6 dB before surgery to 34.1 dB post-operatively, signifying a mean gain in pure tone average of 23.5 dB (p = 0.0002). Phonetically balanced maximum word recognition score improved slightly from 70.5 per cent to 75.8 per cent (p = 0.416), and word recognition score at a hearing level of 50 dB values increased substantially from 14.4 per cent to 70.4 per cent (p < 0.0001). Both revision and explant rates were low and dropped with increasing surgeon experience over time. Conclusion This study showed excellent post-operative hearing results with active middle-ear implants with regard to pure tone average and word recognition score at a hearing level of 50 db. Complication rates in this case series were significantly lower with increasing experience of the surgeon. Active middle-ear implants should be considered in appropriate patients with moderate-to-severe sensorineural hearing loss who have struggled with conventional amplification and are good surgical candidates.


1999 ◽  
Vol 8 (1) ◽  
pp. 47-56 ◽  
Author(s):  
Christopher W. Turner ◽  
Karolyn J. Cummings

This study investigated whether there are limitations on the benefit of providing audible speech information to listeners with high-frequency hearing loss. In a group of 10 listeners with various degrees of high-frequency hearing loss, speech recognition was tested across a wide range of presentation levels. For each of these listeners with hearing loss, recognition performance reached an asymptote of <100%. When the spectrum of the speech for this asymptotic performance level was compared with the listener's pure-tone thresholds, it was seen that providing audible speech to high-frequency regions (≥3000 Hz), where hearing loss exceeds 55 dB HL, tended to produce little or no improvement in recognition scores. In contrast, providing audible speech to lower frequency regions for a listener with a flat, severe-to-profound hearing loss did show improvement with increasing speech audibility, despite this listener's thresholds being greater than 55 dB HL. The present study adds further support to the idea that attempting to provide amplification to regions with severe high-frequency hearing loss (≥3000 Hz) may not necessarily benefit many individuals with hearing loss.


2005 ◽  
Vol 16 (06) ◽  
pp. 367-382 ◽  
Author(s):  
Richard H. Wilson ◽  
Deborah G. Weakley

The purpose of this study was to determine if performances on a 500 Hz MLD task and a word-recognition task in multitalker babble covaried or varied independently for listeners with normal hearing and for listeners with hearing loss. Young listeners with normal hearing (n = 25) and older listeners (25 per decade from 40–80 years, n = 125) with sensorineural hearing loss were studied. Thresholds at 500 and 1000 Hz were ≤30 dB HL and ≤40 dB HL, respectively, with thresholds above 1000 Hz <100 dB HL. There was no systematic relationship between the 500 Hz MLD and word-recognition performance in multitalker babble. Higher SoNo and SπNo; thresholds were observed for the older listeners, but the MLDs were the same for all groups. Word recognition in babble in terms of signal-to-babble ratio was on average 6.5 (40- to 49-year-old group) to 10.8 dB (80- to 89-year-old group) poorer for the older listeners with hearing loss. Neither pure-tone thresholds nor word-recognition abilities in quiet accurately predicted word-recognition performance in multitalker babble.


2000 ◽  
Vol 43 (1) ◽  
pp. 217-228 ◽  
Author(s):  
Susan L. Phillips ◽  
Sandra Gordon-Salant ◽  
Peter J. Fitzgibbons ◽  
Grace Yeni-Komshian

There is a subgroup of elderly listeners with hearing loss who can be characterized by exceptionally poor speech understanding. This study examined the hypothesis that the poor speech-understanding performance of some elderly listeners is associated with disproportionate deficits in temporal resolution and frequency resolution, especially for complex signals. Temporal resolution, as measured by gap detection, and frequency resolution, as measured by the critical ratio, were examined in older listeners with normal hearing, older listeners with hearing loss and good speech-recognition performance, and older listeners with hearing loss and poor speech-recognition performance. Listener performance was evaluated for simple and complex stimuli and for tasks of added complexity. In addition, syllable recognition was assessed in quiet and noise. The principal findings were that older listeners with hearing loss and poor word-recognition performance did not perform differently from older listeners with hearing loss and good word recognition on the temporal resolution measures nor on the spectral resolution measures for relatively simple stimuli. However, frequency resolution was compromised for listeners with poor word-recognition abilities when targets were presented in the context of complex signals. Group differences observed for syllable recognition in quiet were eliminated in the noise condition. Taken together, the findings support the hypothesis that unusual deficits in word-recognition performance among elderly listeners were associated with poor spectral resolution for complex signals.


2020 ◽  
Vol 4 (Supplement_1) ◽  
pp. 214-215
Author(s):  
Rahul Sharma ◽  
Anil Lalwani ◽  
Justin Golub

Abstract The progression and asymmetry of age-related hearing loss has not been well characterized in those 80 years of age and older because public datasets mask upper extremes of age to protect anonymity. We aimed to model the progression and asymmetry of hearing loss in the older old using a representative, national database. This was a cross-sectional, multicentered US epidemiologic analysis using the National Health and Nutrition Examination Study (NHANES) 2005-2006, 2009-2010, and 2011-2012 cycles. Subjects included non-institutionalized, civilian adults 80 years and older (n=621). Federal security clearance was granted to access publicly-restricted age data. Outcome measures included pure-tone average air conduction thresholds and the 4-frequency pure tone average (PTA). 621 subjects were 80 years old or older (mean=84.2 years, range=80-104 years), representing 10,600,197 Americans. Hearing loss exhibited constant acceleration across the adult lifespan at a rate of 0.0052 dB/year2 (95% CI = 0.0049, 0.0055). Compounded over a lifetime, the velocity of hearing loss would increase five-fold, from 0.2 dB loss/year at age 20 to 1 dB loss/year at age 100. This model predicted mean PTA within 2 dB of accuracy for most ages between 20 and 100 years. There was no change in the asymmetry of hearing loss with increasing age over 80 years (linear regression coefficient of asymmetry over age=0.07 (95% CI=-0.01, 0.24). In conclusion, hearing loss steadily and predictably accelerates across the adult lifespan to at least age 100, becoming near-universal. These population-level statistics will guide treatment and policy recommendations for hearing health in the older old.


2020 ◽  
Vol 24 ◽  
pp. 233121652098029
Author(s):  
Allison Trine ◽  
Brian B. Monson

Several studies have demonstrated that extended high frequencies (EHFs; >8 kHz) in speech are not only audible but also have some utility for speech recognition, including for speech-in-speech recognition when maskers are facing away from the listener. However, the contribution of EHF spectral versus temporal information to speech recognition is unknown. Here, we show that access to EHF temporal information improved speech-in-speech recognition relative to speech bandlimited at 8 kHz but that additional access to EHF spectral detail provided an additional small but significant benefit. Results suggest that both EHF spectral structure and the temporal envelope contribute to the observed EHF benefit. Speech recognition performance was quite sensitive to masker head orientation, with a rotation of only 15° providing a highly significant benefit. An exploratory analysis indicated that pure-tone thresholds at EHFs are better predictors of speech recognition performance than low-frequency pure-tone thresholds.


2021 ◽  
pp. 000348942199527
Author(s):  
Gabriel Dunya ◽  
Fadi Najem ◽  
Aurelie Mailhac ◽  
Samer Abou Rizk ◽  
Marc Bassim

Objective: The effect of hearing aid use on the evolution of presbycusis has not been well described in the literature, with only a handful of publications addressing this topic. This paper aims to evaluate the long-term use of amplification and its effect on pure-tone thresholds and word recognition scores. Method: Monaurally fitted patients were followed with serial audiograms. Data was collected from hearing aid centers. Seventy-seven patients with presbycusis met the inclusion criteria and participated in the present study. The progression of hearing loss in both pure tone thresholds and word recognition scores were compared between the hearing aid ears (HA), and the non-hearing aid ears (NHA). Pure tone thresholds were analyzed by comparing the pure tone average at the initial and last audiograms. Word Recognition Scores (WRS) were analyzed using the model of Thornton and Raffin (1978), and by comparing the change in the absolute values of WRS from the initial to the last audiogram between the HA ear and the NHA ear. Results: No significant difference in pure-tone thresholds between the HA ear and NHA ear was found at the last audiogram ( P = .696), even after dividing the patients into groups based on the duration of amplification. Both methods of analysis of patients’ WRS showed a statistically significant worsening in NHA ( P < .05). Conclusion: The present study supports the previously defined auditory deprivation effect on non-fitted ears, which showed worsening of word recognition over time and no effect on pure tone average. It provides an additional argument for the counseling of patients with presbycusis considering amplification, and highlights the importance of bilateral amplification in preserving the residual hearing of hearing impaired patients.


2012 ◽  
Vol 23 (08) ◽  
pp. 577-589 ◽  
Author(s):  
Mary Rudner ◽  
Thomas Lunner ◽  
Thomas Behrens ◽  
Elisabet Sundewall Thorén ◽  
Jerker Rönnberg

Background: Recently there has been interest in using subjective ratings as a measure of perceived effort during speech recognition in noise. Perceived effort may be an indicator of cognitive load. Thus, subjective effort ratings during speech recognition in noise may covary both with signal-to-noise ratio (SNR) and individual cognitive capacity. Purpose: The present study investigated the relation between subjective ratings of the effort involved in listening to speech in noise, speech recognition performance, and individual working memory (WM) capacity in hearing impaired hearing aid users. Research Design: In two experiments, participants with hearing loss rated perceived effort during aided speech perception in noise. Noise type and SNR were manipulated in both experiments, and in the second experiment hearing aid compression release settings were also manipulated. Speech recognition performance was measured along with WM capacity. Study Sample: There were 46 participants in all with bilateral mild to moderate sloping hearing loss. In Experiment 1 there were 16 native Danish speakers (eight women and eight men) with a mean age of 63.5 yr (SD = 12.1) and average pure tone (PT) threshold of 47. 6 dB (SD = 9.8). In Experiment 2 there were 30 native Swedish speakers (19 women and 11 men) with a mean age of 70 yr (SD = 7.8) and average PT threshold of 45.8 dB (SD = 6.6). Data Collection and Analysis: A visual analog scale (VAS) was used for effort rating in both experiments. In Experiment 1, effort was rated at individually adapted SNRs while in Experiment 2 it was rated at fixed SNRs. Speech recognition in noise performance was measured using adaptive procedures in both experiments with Dantale II sentences in Experiment 1 and Hagerman sentences in Experiment 2. WM capacity was measured using a letter-monitoring task in Experiment 1 and the reading span task in Experiment 2. Results: In both experiments, there was a strong and significant relation between rated effort and SNR that was independent of individual WM capacity, whereas the relation between rated effort and noise type seemed to be influenced by individual WM capacity. Experiment 2 showed that hearing aid compression setting influenced rated effort. Conclusions: Subjective ratings of the effort involved in speech recognition in noise reflect SNRs, and individual cognitive capacity seems to influence relative rating of noise type.


2007 ◽  
Vol 18 (07) ◽  
pp. 604-617 ◽  
Author(s):  
Thomas Lunner ◽  
Elisabet Sundewall-Thorén

This study which included 23 experienced hearing aid users replicated several of the experiments reported in Gatehouse et al (2003, 2006) with new speech test material, language, and test procedure. The performance measure used was SNR required for 80% correct words in a sentence test. Consistent with Gatehouse et al, this study indicated that subjects showing a low score in a cognitive test (visual letter monitoring) performed better in the speech recognition test with slow time constants than with fast time constants, and performed better in unmodulated noise than in modulated noise, while subjects with high scores on the cognitive test showed the opposite pattern. Furthermore, cognitive test scores were significantly correlated with the differential advantage of fast-acting versus slow-acting compression in conditions of modulated noise.The pure tone average threshold explained 30% of the variance in aided speech recognition in noise under relatively simple listening conditions, while cognitive test scores explained about 40% of the variance under more complex, fluctuating listening conditions, where the pure tone average explained less than 5% of the variance. This suggests that speech recognition under steady-state noise conditions may underestimate the role of cognition in real-life listening.


Sign in / Sign up

Export Citation Format

Share Document