Comparing NAL-NL1 and DSL v5 in Hearing Aids Fit to Children with Severe or Profound Hearing Loss: Goodness of Fit-to-Targets, Impacts on Predicted Loudness and Speech Intelligibility

2015 ◽  
Vol 26 (03) ◽  
pp. 260-274 ◽  
Author(s):  
Teresa Y.C. Ching ◽  
Tian Kar Quar ◽  
Earl E. Johnson ◽  
Philip Newall ◽  
Mridula Sharma

Background: An important goal of providing amplification to children with hearing loss is to ensure that hearing aids are adjusted to match targets of prescriptive procedures as closely as possible. The Desired Sensation Level (DSL) v5 and the National Acoustic Laboratories’ prescription for nonlinear hearing aids, version 1 (NAL-NL1) procedures are widely used in fitting hearing aids to children. Little is known about hearing aid fitting outcomes for children with severe or profound hearing loss. Purpose: The purpose of this study was to investigate the prescribed and measured gain of hearing aids fit according to the NAL-NL1 and the DSL v5 procedure for children with moderately severe to profound hearing loss; and to examine the impact of choice of prescription on predicted speech intelligibility and loudness. Research Design: Participants were fit with Phonak Naida V SP hearing aids according to the NAL-NL1 and DSL v5 procedures. The Speech Intelligibility Index (SII) and estimated loudness were calculated using published models. Study Sample: The sample consisted of 16 children (30 ears) aged between 7 and 17 yr old. Data Collection and Analysis: The measured hearing aid gains were compared with the prescribed gains at 50 (low), 65 (medium), and 80 dB SPL (high) input levels. The goodness of fit-to-targets was quantified by calculating the average root-mean-square (RMS) error of the measured gain compared with prescriptive gain targets for 0.5, 1, 2, and 4 kHz. The significance of difference between prescriptions for hearing aid gains, SII, and loudness was examined by performing analyses of variance. Correlation analyses were used to examine the relationship between measures. Results: The DSL v5 prescribed significantly higher overall gain than the NAL-NL1 procedure for the same audiograms. For low and medium input levels, the hearing aids of all children fit with NAL-NL1 were within 5 dB RMS of prescribed targets, but 33% (10 ears) deviated from the DSL v5 targets by more than 5 dB RMS on average. For high input level, the hearing aid fittings of 60% and 43% of ears deviated by more than 5 dB RMS from targets of NAL-NL1 and DSL v5, respectively. Greater deviations from targets were associated with more severe hearing loss. On average, the SII was higher for DSL v5 than for NAL-NL1 at low input level. No significant difference in SII was found between prescriptions at medium or high input level, despite greater loudness for DSL v5 than for NAL-NL1. Conclusions: Although targets between 0.25 and 2 kHz were well matched for both prescriptions in commercial hearing aids, gain targets at 4 kHz were matched for NAL-NL1 only. Although the two prescriptions differ markedly in estimated loudness, they resulted in comparable predicted speech intelligibility for medium and high input levels.

2019 ◽  
Vol 30 (05) ◽  
pp. 346-356 ◽  
Author(s):  
Tian Kar Quar ◽  
Cila Umat ◽  
Yong Yee Chew

AbstractThe use of probe microphone measures in hearing aid verification is often neglected or not fully used by practitioners. Some practitioners rely on simulated gain and output provided by manufacturer's fitting software to verify hearing aids.This study aims to evaluate the effectiveness of manufacturer’s prefit procedure in matching the prescribed real-ear targets. It also aims to study its correlated impact on the predicted speech perception in children with severe and profound hearing loss.This cross-sectional experiment was carried out by measuring the output of hearing aids based on prefit versus real-ear at low-, moderate-, and high-input levels. The predicted speech perception for different hearing aid fittings was determined based on the Speech Intelligibility Index (SII).Sixteen children (28 ears) aged between 4 and 7 yr, with severe to profound sensorineural hearing loss took part in the study.Two different types of hearing aids (Phonak and Unitron) were programmed based on their respective manufacturers’ Desired Sensation Levels (DSL) v5 Child procedure. The hearing aids were then verified using coupler-based measurements and individual real-ear-to-coupler differences. The prefit outputs were compared with the DSL v5 Child–prescribed outputs at low-, moderate-, and high-input levels. The hearing aids were then adjusted to closely match the prescribed output. The SIIs were calculated for the fittings before and after adjustment.Sixty four percent of fittings that were based on the prefit procedure achieved the optimal fit-to-targets, with less than 5-dB RMS deviations from the DSL v5 Child targets. After adjusting the hearing aids to attempt to meet the DSL v5 Child targets, 75% of the ears tested achieved the optimal fit-to-targets. On average, hearing aid outputs generated by the manufacturer’s prefit procedure had good and reasonable agreement with the DSL v5 Child–prescribed outputs at low- and mid-frequencies. Nonetheless, at 4000 Hz, the hearing aid output mostly fell below the DSL v5 Child–prescribed outputs. This was still the case even after the hearing aid was adjusted to attempt to match with the targets. At low input level, some prefit outputs were found to be higher than the prescribed outputs. The deviations of prefit outputs from the prescribed outputs were dependent on the type of hearing aid and input levels. There was no significant difference between the SII calculated for fittings based on the prefit and adjusted fit.Prefit procedure tends to produce outputs that were below the DSL v5 Child–prescribed outputs, with the largest mean difference at 4000 Hz. Even though the hearing aid gains were adjusted to attempt to match with the targets, the outputs were still below the targets. The limitations of hearing aids to match the DSL v5 Child targets at high-frequency region have resulted in no improvement in the children’s predicted speech perception.


2020 ◽  
Vol 5 (1) ◽  
pp. 36-39
Author(s):  
Mariya Yu. Boboshko ◽  
Irina P. Berdnikova ◽  
Natalya V. Maltzeva

Objectives -to determine the normative data of sentence speech intelligibility in a free sound field and to estimate the applicability of the Russian Matrix Sentence test (RuMatrix) for assessment of the hearing aid fitting benefit. Material and methods. 10 people with normal hearing and 28 users of hearing aids with moderate to severe sensorineural hearing loss were involved in the study. RuMatrix test both in quiet and in noise was performed in a free sound field. All patients filled in the COSI questionnaire. Results. The hearing impaired patients were divided into two subgroups: the 1st with high and the 2nd with low hearing aid benefit, according to the COSI questionnaire. In the 1st subgroup, the threshold for the sentence intelligibility in quiet was 34.9 ± 6.4 dB SPL, and in noise -3.3 ± 1.4 dB SNR, in the 2nd subgroup 41.7 ± 11.5 dB SPL and 0.15 ± 3.45 dB SNR, respectively. The significant difference between the data of both subgroups and the norm was registered (p


2018 ◽  
Vol 29 (03) ◽  
pp. 243-254 ◽  
Author(s):  
Angeline Seeto ◽  
Grant D. Searchfield

AbstractAdvances in digital signal processing have made it possible to provide a wide-band frequency response with smooth, precise spectral shaping. Several manufacturers have introduced hearing aids that are claimed to provide gain for frequencies up to 10–12 kHz. However, there is currently limited evidence and very few independent studies evaluating the performance of the extended bandwidth hearing aids that have recently become available.This study investigated an extended bandwidth hearing aid using measures of speech intelligibility and sound quality to find out whether there was a significant benefit of extended bandwidth amplification over standard amplification.Repeated measures study designed to examine the efficacy of extended bandwidth amplification compared to standard bandwidth amplification.Sixteen adult participants with mild-to-moderate sensorineural hearing loss.Participants were bilaterally fit with a pair of Widex Mind 440 behind-the-ear hearing aids programmed with a standard bandwidth fitting and an extended bandwidth fitting; the latter provided gain up to 10 kHz.For each fitting, and an unaided condition, participants completed two speech measures of aided benefit, the Quick Speech-in-Noise test (QuickSIN™) and the Phonak Phoneme Perception Test (PPT; high-frequency perception in quiet), and a measure of sound quality rating.There were no significant differences found between unaided and aided conditions for QuickSIN™ scores. For the PPT, there were statistically significantly lower (improved) detection thresholds at high frequencies (6 and 9 kHz) with the extended bandwidth fitting. Although not statistically significant, participants were able to distinguish between 6 and 9 kHz 50% better with extended bandwidth. No significant difference was found in ability to recognize phonemes in quiet between the unaided and aided conditions when phonemes only contained frequency content <6 kHz. However significant benefit was found with the extended bandwidth fitting for recognition of 9-kHz phonemes. No significant difference in sound quality preference was found between the standard bandwidth and extended bandwidth fittings.This study demonstrated that a pair of currently available extended bandwidth hearing aids was technically capable of delivering high-frequency amplification that was both audible and useable to listeners with mild-to-moderate hearing loss. This amplification was of acceptable sound quality. Further research, particularly field trials, is required to ascertain the real-world benefit of high-frequency amplification.


2013 ◽  
Vol 24 (02) ◽  
pp. 105-120 ◽  
Author(s):  
Ann E. Perreau ◽  
Ruth A. Bentler ◽  
Richard S. Tyler

Background: Frequency-lowering signal processing in hearing aids has re-emerged as an option to improve audibility of the high frequencies by expanding the input bandwidth. Few studies have investigated the usefulness of the scheme as an option for bimodal users (i.e., combined use of a cochlear implant and a contralateral hearing aid). In this study, that question was posed. Purpose: The purposes of this study were (1) to determine if frequency compression was a better bimodal option than conventional amplification and (2) to determine the impact of a frequency-compression hearing aid on speech recognition abilities. Research Design: There were two separate experiments in this study. The first experiment investigated the contribution of a frequency-compression hearing aid to contralateral cochlear implant (CI) performance for localization and speech perception in noise. The second experiment assessed monaural consonant and vowel perception in quiet using the frequency-compression and conventional hearing aid without the use of a contralateral CI or hearing aid. Study Sample: Ten subjects fitted with a cochlear implant and hearing aid participated in the first experiment. Seventeen adult subjects with a cochlear implant and hearing aid or two hearing aids participated in the second experiment. To be included, subjects had to have a history of postlingual deafness, a moderate or moderate-to-severe hearing loss, and have not worn this type of frequency-lowering hearing aid previously. Data Collection and Analysis: In the first experiment, performance using the frequency-compression and conventional hearing aids was assessed on tests of sound localization, speech perception in a background of noise, and two self-report questionnaires. In the second experiment, consonant and vowel perception in quiet was assessed monaurally for the two conditions. In both experiments, subjects alternated daily between a frequency-compression and conventional hearing aid for 2 mo. The parameters of frequency compression were set individually for each subject, and audibility was measured for the frequency compression and conventional hearing aid programs by comparing estimations of the Speech Intelligibility Index (SII) using a modified algorithm (Bentler et al, 2011). In both experiments, the outcome measures were administered following the hearing aid fitting to assess performance at baseline and after 2 mo of use. Results: For this group of subjects, the results revealed no significant difference between the frequency-compression and conventional hearing aid on tests of localization and consonant recognition. Spondee-in-noise and vowel perception scores were significantly higher with the conventional hearing aid compared to the frequency-compression hearing aid after 2 mo of use. Conclusions: These results suggest that, for the subjects in this study, frequency compression is not a better bimodal option than conventional amplification. In addition, speech perception may be negatively influenced by frequency compression because formant frequencies are too severely compressed and can no longer be distinguished.


2021 ◽  
Vol 11 (2) ◽  
pp. 200-206
Author(s):  
Gennaro Auletta ◽  
Annamaria Franzè ◽  
Carla Laria ◽  
Carmine Piccolo ◽  
Carmine Papa ◽  
...  

Background: The aim of this study was to compare, in users of bimodal cochlear implants, the performance obtained using their own hearing aids (adjusted with the standard NAL-NL1 fitting formula) with the performance using the Phonak Naìda Link Ultra Power hearing aid adjusted with both NAL-NL1 and a new bimodal system (Adaptive Phonak Digital Bimodal (APDB)) developed by Advanced Bionics and Phonak Corporations. Methods: Eleven bimodal users (Naìda CI Q70 + contralateral hearing aid) were enrolled in our study. The users’ own hearing aids were replaced with the Phonak Naìda Link Ultra Power and fitted following the new formula. Speech intelligibility was assessed in quiet and noisy conditions, and comparisons were made with the results obtained with the users’ previous hearing aids and with the Naída Link hearing aids fitted with the NAL-NL1 generic prescription formula. Results: Using Phonak Naìda Link Ultra Power hearing aids with the Adaptive Phonak Digital Bimodal fitting formula, performance was significantly better than that with the users’ own rehabilitation systems, especially in challenging hearing situations for all analyzed subjects. Conclusions: Speech intelligibility tests in quiet settings did not reveal a significant difference in performance between the new fitting formula and NAL-NL1 fittings (using the Naída Link hearing aids), whereas the performance difference between the two fittings was very significant in noisy test conditions.


2020 ◽  
pp. 132-136
Author(s):  
Hiroshi Ikeda ◽  
Shigeyuki Minami

Hearing impaired persons are required to drive with hearing aids to supplement their hearing ability, however, there has not been sufficient discussion regarding the impact of the use of a hearing aid on driving a vehicle. In order to investigate the actual usage and driving conditions of using hearing aids while driving a vehicle, this paper uses a questionnaire to survey (1) how easy it is to drive when wearing hearing aids, and (2) how often hearing aids are not worn while driving. Concerning the ease of driving when wearing a hearing aid, it was suggested that people with congenital hearing loss were more likely to rely on visual information, and those with acquired hearing loss continue to use their experience of hearing. When the level of disability is high, it is difficult to drive when using the hearing aid, and when the disability level is low, it is easier to drive. Regarding the frequency of driving without wearing hearing aids, about 60 % of respondents had such an experience. Those who often drive without hearing aids had experienced headaches due to noise from wearing hearing aids compared to those who wear hearing aids at all times. Hearing aids are necessary assistive devices for hearing impaired persons to obtain hearing information, and to provide a safe driving environment. Therefore, this paper addresses issues to maintain a comfortable driving environment while wearing a hearing aid.


2003 ◽  
Vol 14 (02) ◽  
pp. 084-099 ◽  
Author(s):  
Francis K. Kuk ◽  
Lisa Potts ◽  
Michael Valente ◽  
Lidia Lee ◽  
Jay Picirrillo

The present study examined the phenomenon of acclimatization in persons with a severe-to-profound hearing loss. A secondary purpose was to examine the efficacy of a digital nonlinear power hearing aid that has a low compression threshold with expansion for this population. Twenty experienced hearing aid users wore the study hearing aids for three months and their performance with the study hearing aids was evaluated at the initial fitting, one month, and three months after the initial fitting. Performance of their current hearing aids was also evaluated at the initial fitting. Speech recognition testing was conducted at input levels of 50 dB SPL and 65 dB SPL in quiet, and 75 dB SPL in noise at a +10 SNR. Questionnaires were used to measure subjective performance at each evaluation interval. The results showed improvement in speech recognition score at the one-month evaluation over the initial evaluation. No significant improvement was seen at the three-month evaluation from the one-month visit. In addition, subjective and objective performance of the study hearing aids was significantly better than the participants' own hearing aids at all evaluation intervals. These results provided evidence of acclimatization in persons with a severe-to-profound hearing loss and reinforced the precaution that any trial of amplification, especially from linear to nonlinear mode, should consider this phenomenon.


1980 ◽  
Vol 23 (2) ◽  
pp. 470-479 ◽  
Author(s):  
Elmer Owens ◽  
Sharon Fujikawa

Subjects with profound postlingual hearing loss completed the Hearing Performance Inventory (HPI) during the course of their hearing aid evaluations. Comparisons of responses to the HPI were made for (a) subjects who wore hearing aids versus subjects who did not, and (b)hearing aid users with losses greater than 100 dB versus users with losses between 80-100 dB. The former set of comparisons indicated consistently superior performance for the aided group, and the latter set indicated consistently superior performance for the 80-100 dB group. The HPI may be a valuable tool in hearing aid considerations.


2020 ◽  
Vol 31 (05) ◽  
pp. 354-362
Author(s):  
Paula Folkeard ◽  
Marlene Bagatto ◽  
Susan Scollie

Abstract Background Hearing aid prescriptive methods are a commonly recommended component of evidence-based preferred practice guidelines and are often implemented in the hearing aid programming software. Previous studies evaluating hearing aid manufacturers' software-derived fittings to prescriptions have shown significant deviations from targets. However, few such studies examined the accuracy of software-derived fittings for the Desired Sensation Level (DSL) v5.0 prescription. Purpose The purpose of this study was to evaluate the accuracy of software-derived fittings to the DSL v5.0 prescription, across a range of hearing aid brands, audiograms, and test levels. Research Design This study is a prospective chart review with simulated cases. Data Collection and Analysis A set of software-derived fittings were created for a six-month-old test case, across audiograms ranging from mild to profound. The aided output from each fitting was verified in the test box at 55-, 65-, 75-, and 90-dB SPL, and compared with DSL v5.0 child targets. The deviations from target across frequencies 250-6000 Hz were calculated, together with the root-mean-square error (RMSE) from target. The aided Speech Intelligibility Index (SII) values generated for the speech passages at 55- and 65-dB SPL were compared with published norms. Study Sample Thirteen behind-the-ear style hearing aids from eight manufacturers were tested. Results The amount of deviation per frequency was dependent on the test level and degree of hearing loss. Most software-derived fittings for mild-to-moderately severe hearing losses fell within ± 5 dB of the target for most frequencies. RMSE results revealed more than 84% of those hearing aid fittings for the mild-to-moderate hearing losses were within 5 dB at all test levels. Fittings for severe to profound hearing losses had the greatest deviation from target and RMSE. Aided SII values for the mild-to-moderate audiograms fell within the normative range for DSL pediatric fittings, although they fell within the lower portion of the distribution. For more severe losses, SII values for some hearing aids fell below the normative range. Conclusions In this study, use of the software-derived manufacturers' fittings based on the DSL v5.0 pediatric targets set most hearing aids within a clinically acceptable range around the prescribed target, particularly for mild-to-moderate hearing losses. However, it is likely that clinician adjustment based on verification of hearing aid output would be required to optimize the fit to target, maximize aided SII, and ensure appropriate audibility across all degrees of hearing loss.


2010 ◽  
Vol 21 (03) ◽  
pp. 169-175 ◽  
Author(s):  
Kathy S. Halpin ◽  
Kay Y. Smith ◽  
Judith E. Widen ◽  
Mark E. Chertoff

Background: Universal Newborn Hearing Screening (UNHS) was introduced in Kansas in 1999. Prior to UNHS a small percentage of newborns were screened for and identified with hearing loss. Purpose: The purpose of this study was to determine the effects of UNHS on a local early intervention (EI) program for young children with hearing loss. Research Design: This was a retrospective study based on the chart review of children enrolled in the EI program during target years before and after the establishment of UNHS. Study Sample: Charts for 145 children were reviewed. Data Collection and Analysis: The chart review targeted the following aspects of the EI program: caseload size, percentage of caseload identified by UNHS, age of diagnosis, age of enrollment in EI, degree of hearing loss, etiology of hearing loss, late onset of hearing loss, age of hearing aid fit, percentage of children fit with hearing aids by 6 mo, percentage of children with profound hearing loss with cochlear implants, and percentage of children with additional disabilities. Results: Changes in the EI program that occurred after UNHS were increases in caseload size, percentage of caseload identified by UNHS, percentage of children fit with hearing aids by 6 mo of age, and percentage of children with profound hearing loss with cochlear implants. There were decreases in age of diagnosis, age of enrollment in EI, and age of hearing aid fit. Before UNHS, the majority of children had severe and profound hearing loss; after UNHS there were more children with mild and moderate hearing loss. The percentage of known etiology and late-onset hearing loss was approximately the same before and after UNHS, as was the percentage of children with additional disabilities. Conclusion: UNHS had a positive impact on caseload size, age of diagnosis, age of enrollment in EI, and age of hearing aid fit. The percentage of the caseload identified in the newborn period was about 25% before UNHS and over 80% after its implementation. After UNHS, the EI caseload included as many children with mild and moderate hearing loss as with severe and profound loss. By the last reporting year in the study (academic year 2005–2006) all children with profound hearing losses had cochlear implants.


Sign in / Sign up

Export Citation Format

Share Document