Electrical response of PC-type HgCdTe detector under out-band 10.6 μm laser irradiation

2010 ◽  
Vol 22 (12) ◽  
pp. 2829-2833
Author(s):  
贺元兴 He Yuanxing ◽  
江厚满 Jiang Houman
Author(s):  
Burton B. Silver ◽  
Theodore Lawwill

Dutch-belted 1 to 2.5 kg anesthetized rabbits were exposed to either xenon or argon laser light administered in a broad band, designed to cover large areas of the retina. For laser exposure, the pupil was dilated with atropine sulfate 1% and pheny lephrine 10%. All of the laser generated power was within a band centered at 5145.0 Anstroms. Established threshold for 4 hour exposures to laser irradiation are in the order of 25-35 microwatts/cm2. Animals examined for ultrastructural changes received 4 hour threshold doses. These animals exhibited ERG, opthalmascopic, and histological changes consistent with threshold damage.One month following exposure the rabbits were killed with pentobarbitol. The eyes were immediately enucleated and dissected while bathed in 3% phosphate buffered gluteraldehyde.


Author(s):  
Steven D. Toteda

Zirconia oxygen sensors, in such applications as power plants and automobiles, generally utilize platinum electrodes for the catalytic reaction of dissociating O2 at the surface. The microstructure of the platinum electrode defines the resulting electrical response. The electrode must be porous enough to allow the oxygen to reach the zirconia surface while still remaining electrically continuous. At low sintering temperatures, the platinum is highly porous and fine grained. The platinum particles sinter together as the firing temperatures are increased. As the sintering temperatures are raised even further, the surface of the platinum begins to facet with lower energy surfaces. These microstructural changes can be seen in Figures 1 and 2, but the goal of the work is to characterize the microstructure by its fractal dimension and then relate the fractal dimension to the electrical response. The sensors were fabricated from zirconia powder stabilized in the cubic phase with 8 mol% percent yttria. Each substrate was sintered for 14 hours at 1200°C. The resulting zirconia pellets, 13mm in diameter and 2mm in thickness, were roughly 97 to 98 percent of theoretical density. The Engelhard #6082 platinum paste was applied to the zirconia disks after they were mechanically polished ( diamond). The electrodes were then sintered at temperatures ranging from 600°C to 1000°C. Each sensor was tested to determine the impedance response from 1Hz to 5,000Hz. These frequencies correspond to the electrode at the test temperature of 600°C.


Author(s):  
S. Cao ◽  
A. J. Pedraza ◽  
L. F. Allard

Excimer-laser irradiation strongly modifies the near-surface region of aluminum nitride (AIN) substrates. The surface acquires a distinctive metallic appearance and the electrical resistivity of the near-surface region drastically decreases after laser irradiation. These results indicate that Al forms at the surface as a result of the decomposition of the Al (which has been confirmed by XPS). A computer model that incorporates two opposing phenomena, decomposition of the AIN that leaves a metallic Al film on the surface, and thermal evaporation of the Al, demonstrated that saturation of film thickness and, hence, of electrical resistance is reached when the rate of Al evaporation equals the rate of AIN decomposition. In an electroless copper bath, Cu is only deposited in laser-irradiated areas. This laser effect has been designated laser activation for electroless deposition. Laser activation eliminates the need of seeding for nucleating the initial layer of electroless Cu. Thus, AIN metallization can be achieved by laser patterning followed by electroless deposition.


2009 ◽  
Vol 00 (00) ◽  
pp. 090915102728058-8
Author(s):  
Yoshiteru Kato ◽  
Yasuhiko Nakashima ◽  
Naoki Shino ◽  
Koichi Sasaki ◽  
Akihiro Hosokawa ◽  
...  

1993 ◽  
Vol 3 (12) ◽  
pp. 2173-2188
Author(s):  
N. G. Chechenin ◽  
A. V. Chernysh ◽  
V. V. Korneev ◽  
E. V. Monakhov ◽  
B. V. Seleznev

2001 ◽  
Vol 11 (PR11) ◽  
pp. Pr11-121-Pr11-125
Author(s):  
F. Abbott ◽  
A. F. Dégardin ◽  
A. De Luca ◽  
O. Schneegans ◽  
É. Caristan ◽  
...  

1983 ◽  
Vol 44 (C5) ◽  
pp. C5-449-C5-454 ◽  
Author(s):  
P. Baeri ◽  
M. G. Grimaldi ◽  
E. Rimini ◽  
G. Celotti

1983 ◽  
Vol 44 (C5) ◽  
pp. C5-23-C5-36 ◽  
Author(s):  
H. Kurz ◽  
L. A. Lompré ◽  
J. M. Liu

Sign in / Sign up

Export Citation Format

Share Document