scholarly journals INFLUENCE OF WELD JOINT PREPARATION ON THE MECHANICAL PROPERTIES OF HIGH STRENGTH STEEL S700MC WELDMENTS

2021 ◽  
Author(s):  
Nikolay FERDINANDOV ◽  
Danail GOSPODINOV ◽  
Mariana ILIEVA ◽  
Rossen RADEV
2012 ◽  
Vol 27 (6) ◽  
pp. 1024-1028 ◽  
Author(s):  
Zhengtao Duan ◽  
Yanmei Li ◽  
Mingya Zhang ◽  
Minghan Shi ◽  
Fuxian Zhu ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 1988
Author(s):  
Tibor Kvackaj ◽  
Jana Bidulská ◽  
Róbert Bidulský

This review paper concerns the development of the chemical compositions and controlled processes of rolling and cooling steels to increase their mechanical properties and reduce weight and production costs. The paper analyzes the basic differences among high-strength steel (HSS), advanced high-strength steel (AHSS) and ultra-high-strength steel (UHSS) depending on differences in their final microstructural components, chemical composition, alloying elements and strengthening contributions to determine strength and mechanical properties. HSS is characterized by a final single-phase structure with reduced perlite content, while AHSS has a final structure of two-phase to multiphase. UHSS is characterized by a single-phase or multiphase structure. The yield strength of the steels have the following value intervals: HSS, 180–550 MPa; AHSS, 260–900 MPa; UHSS, 600–960 MPa. In addition to strength properties, the ductility of these steel grades is also an important parameter. AHSS steel has the best ductility, followed by HSS and UHSS. Within the HSS steel group, high-strength low-alloy (HSLA) steel represents a special subgroup characterized by the use of microalloying elements for special strength and plastic properties. An important parameter determining the strength properties of these steels is the grain-size diameter of the final structure, which depends on the processing conditions of the previous austenitic structure. The influence of reheating temperatures (TReh) and the holding time at the reheating temperature (tReh) of C–Mn–Nb–V HSLA steel was investigated in detail. Mathematical equations describing changes in the diameter of austenite grain size (dγ), depending on reheating temperature and holding time, were derived by the authors. The coordinates of the point where normal grain growth turned abnormal was determined. These coordinates for testing steel are the reheating conditions TReh = 1060 °C, tReh = 1800 s at the diameter of austenite grain size dγ = 100 μm.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Hui Chen ◽  
Jinjin Zhang ◽  
Jin Yang ◽  
Feilong Ye

The tensile behaviors of corroded steel bars are important in the capacity evaluation of corroded reinforced concrete structures. The present paper studies the mechanical behavior of the corroded high strength reinforcing steel bars under static and dynamic loading. High strength reinforcing steel bars were corroded by using accelerated corrosion methods and the tensile tests were carried out under different strain rates. The results showed that the mechanical properties of corroded high strength steel bars were strain rate dependent, and the strain rate effect decreased with the increase of corrosion degree. The decreased nominal yield and ultimate strengths were mainly caused by the reduction of cross-sectional areas, and the decreased ultimate deformation and the shortened yield plateau resulted from the intensified stress concentration at the nonuniform reduction. Based on the test results, reduction factors were proposed to relate the tensile behaviors with the corrosion degree and strain rate for corroded bars. A modified Johnson-Cook strength model of corroded high strength steel bars under dynamic loading was proposed by taking into account the influence of corrosion degree. Comparison between the model and test results showed that proposed model properly describes the dynamic response of the corroded high strength rebars.


2016 ◽  
Vol 96 ◽  
pp. 506-514 ◽  
Author(s):  
Chenyao Xi ◽  
Daqian Sun ◽  
Zhaozhi Xuan ◽  
Jiegong Wang ◽  
Guoshan Song

2021 ◽  
Vol 111 ◽  
pp. 102677
Author(s):  
Hongchao Guo ◽  
Huanhuan Wei ◽  
Jialiang Kou ◽  
Yunhe Liu ◽  
Dixiong Yang

Because of the increase in the levels of residual elements in steel, a programme of work was initiated to determine the limits of copper and tin impurities that were tolerable in steel castings. A 1.5 % Mn—Mo steel was chosen as a base, since any effect of trace elements would be readily apparent in terms of mechanical performance in this medium—high strength steel. The effect of copper was investigated within the range < 0.01-0.5 %, and tin within the range < 0.01-0.26%. The results were analysed by using factorial analysis in the first instance and later, as the amount of experimental work expanded and more results became available, a regression analysis was used.


2018 ◽  
Vol 18 (3) ◽  
pp. 34-42 ◽  
Author(s):  
L. Tuz

AbstractThe paper presents results of microstructure and mechanical properties investigation of laser beam welded high-strength steel. Material for test was non-alloyed steel with yield strength of 690 MPa after quenching and tempering in delivery condition. Research carried out on the butt-welded joints shows fine-grain martensitic-bainitic structure of base metal and in the weld. Investigations of mechanical properties revealed the softened zone in HAZ where the hardness decrease without microstructural changes was observed. Moreover, an influence of softened zone and HAZ width on impact strength was observed where the occurrence of lower hardness led to fracture path deviation phenomenon.


Sign in / Sign up

Export Citation Format

Share Document