Ant Colony Algorithm (ACO) Applied for Tuning PI of Shunt Active Power Filter (SAPF)

2021 ◽  
Vol 17 (2) ◽  
pp. 204-211
Author(s):  
Raheel Jawad ◽  
Rawaa Jawad ◽  
Zahraa Salman

In the present-day decade, the world has regarded an expansion in the use of non-linear loads. These a lot draw harmonic non-sinusoidal currents and voltages in the connection factor with the utility and distribute them with the useful resource of the overall performance of it. The propagation of these currents and voltages into the grids have an effect on the electricity constructions in addition to the one of various client equipment. As a result, the electrical strength notable has come to be critical trouble for each client and distributor of electrical power. Active electrical electricity filters have been proposed as environment splendid gear for electrical power pinnacle notch enchantment and reactive electrical strength compensation. Active Power Filters (APFs) have Flipped out to be a possible wish in mitigating the harmonics and reactive electrical electricity compensation in single-phase and three-phase AC electrical energy networks with Non-Linear Loads (NLLs). Conventionally, this paper applied Ant Colony Algorithm(ACO) for tuning PI and reduce Total Harmonic Distortion (THD). The result show reduces THD at 2.33%.

This paper presents the simulation-based study and results of a three-phase shunt active power filter (SAPF) for power quality improvement. The power quality of the power systems is degraded because of the presence of non-linear loads at the consumer end. The SAPF can reduce the impact of harmonics caused by the non-linear loads. The analyzed SAPF system is modeled and simulated using MATLAB-Simulink workspace. The ultimate goal of this study is to improve the total harmonic distortion of the system as per the standards defined by IEEE-519.


Author(s):  
Saifullah Khalid

A novel hybrid series active power filter to eliminate harmonics and compensate reactive power is presented and analyzed. The proposed active compensation technique is based on a hybrid series active filter using ATS algorithm in the conventional Sinusoidal Fryze voltage (SFV) control technique. This chapter discusses the comparative performances of conventional Sinusoidal Fryze voltage control strategy and ATS-optimized controllers. ATS algorithm has been used to obtain the optimum value of Kp and Ki. Analysis of the hybrid series active power filter system under non-linear load condition and its impact on the performance of the controllers is evaluated. MATLAB/Simulink results and Total harmonic distortion (THD) shows the practical viability of the controller for hybrid series active power filter to provide harmonic isolation of non-linear loads and to comply with IEEE 519 recommended harmonic standards. The ATS-optimized controller has been attempted for shunt active power filter too, and its performance has also been discussed in brief.


“The increased penetration of Distributed Energy Resources (DER) is inspiring the entire design of conventional electrical power system. “A Microgrid (MG) includes distributed generation, loads, energy storage, and a control system that is competent of working in grid-connected mode and/or islanded mode. Power quality (PQ) problems are one of the major technical challenges in MG power system. To get better PQ of energy supply, it is essential to analyze the harmonics distortion of the system. Moreover, harmonic distortion in a MG networks has significantly reduced PQ, which affects the stability of the system. In order to diminish the harmonics, shunt active power filter (SAPF) has been extensively useful and it is verified to be the best solution to current harmonics. The present paper proposes the mitigation of harmonics of a MG system using shunt active power filter (SAPF). However, the SAPF is employed for reimbursing the harmonics concurrently in the distribution system. The proposed model is developed in MATLAB/Simulink and the result obtained validates the superiority of proposed technique over others in terms of harmonics elimination.”


2014 ◽  
Vol 10 (2) ◽  
pp. 1
Author(s):  
MS Hamad ◽  
MI Masoud

 The 6-pulse controlled AC/DC converter produces harmonics. The input current total harmonic distortion and the input power factor, which is firing delay angle dependent, are major drawbacks, and a compensation technique is mandatory. This paper introduces a compensated 6-pulse current sourcecontrolled rectifier with a shunt active power filter (APF ) in different configurations. The shunt APF  with predictive current control is coupled to the 6-pulse systems in three different compensation configurations. The APF  is connected either directly to the front-end transformer primary or secondary side or via a transformer to reduce the filter side voltage. The comparison between these configuration is introduced; each configuration has merits and demerits. The comparison cannot be genuine. Simulation results are presented for a medium voltage converter which is scaled to allow low-voltage experimental confirmation. 


2020 ◽  
Vol 8 (5) ◽  
pp. 4952-4961

Majority of loads in use today are power electronics based non-linear devices. Despite being compact and providing low energy consumption these loads generate inherent harmonics. Harmonics have several adverse effects such as interference with the communication lines, incorrect meter readings, increased losses, increased heating of electrical and sensitive electronic equipment. Sophisticated power electronic converter based filters named as Shunt Active Power Filters (SAPF) are widely being employed that provide superior harmonic filtering capabilities. Basic objective of SAPF is to generate or absorb currents that compensate harmonic currents produced by non- linear loads. These currents should be opposite in phase but have equivalent magnitude as that of harmonic currents. As compared to Diode-Clamped and Flying capacitor multilevel inverters, Cascaded multilevel configuration is employed for many applications due to ease of control and simple structure. In this research paper, power quality in a three-phase threewire system is improved by reducing source side current harmonics produced by a non-linear load. Initially a three-level Cascaded multilevel inverter based SAPF is developed and its performance is analyzed by using advanced Adaptive Neuro Fuzzy Inference System (ANFIS) controller. DC link capacitor voltage and percentage Total Harmonic Distortion (%THD) in source currents is measured at PCC for balanced loading conditions and results are compared. In this paper, it is also proposed to incorporate multilevel inverter topology concepts by employing Five-Level and Seven-Level Cascaded Multilevel Inverters as VSI circuit for SAPF. Performance of these multilevel Shunt Active power filters is analyzed by ANFIS controller. Instantaneous Active-Reactive power theory is implemented to compute reference compensating currents for all Shunt Active power filter models. Phase Disposition type Pulse Width modulation is chosen for generating gate pulses for VSI circuits of all Cascaded multilevel inverter configurations. Three-level, Five-level and Seven-level Shunt active power filter models are developed and simulated using MATLAB/ Simulink and results are presented.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 397
Author(s):  
Saad F. Al-Gahtani ◽  
R. M. Nelms

Shunt active power filters (APFs) are used to address power quality issues such as harmonic distortion and power system imbalance. Many control systems for shunt APFs demand measurements of voltages and currents for the determination of instantaneous real and reactive power signals. From these signals, the reference currents of the shunt APF are calculated. A method of control for the APF shunt that only measures currents is proposed in this paper. The control method includes a modified technique to extract the positive and negative sequence components in the time domain. The reference currents in the shunt APF are calculated by the negative sequence components of the measured currents. Simulation and experimental results confirm the efficiency of this control scheme under ideal and non-ideal conditions.


Author(s):  
Benyettou Loutfi ◽  
T. Benslimane

<p>In this paper a transistor open-circuit fault diagnosis problem in two-level voltage inverter controlled shunt active power filter drives was discussed. Taking into consideration requirements of the contemporary monitoring drive systems original transistor fault diagnostic technique were proposed. Presented results were obtained by designed in PSIM software simulation model.</p>


Sign in / Sign up

Export Citation Format

Share Document