A Study of Effect of Various Normal Force Loading Forms on Frictional Stick-Slip Vibration

2021 ◽  
Author(s):  
Xiaocui Wang ◽  
◽  
Runlan Wang ◽  
Bo Huang ◽  
Jiliang Mo ◽  
...  

In this work, a comparative study is performed to investigate the influence of time-varying normal forces on the friction properties and friction-induced stick-slip vibration by experimental and theoretical methods. In the experiments, constant and harmonic-varying normal forces are applied, respectively. The measured vibration signals under two loading forms are compared in both time and frequency domains. In addition, mathematical tools such as phase space reconstruction and Fourier spectra are used to reveal the science behind the complicated dynamic behaviour. It can be found that the friction system shows steady stick-slip vibration, and the main frequency does not vary with the magnitude of the constant normal force, but the size of limit cycle increases with the magnitude of the constant normal force. In contrast, the friction system harmonic normal force shows complicated behaviour, for example, higher-frequency larger-amplitude vibration occurs as the frequency of the normal force increases. The interesting findings offer a new way for controlling friction-induced stick-slip vibration in engineering applications.

1966 ◽  
Vol 181 (1) ◽  
pp. 169-184 ◽  
Author(s):  
R. Bell ◽  
M. Burdekin

The friction characteristics resulting from the motion of one surface over another form a very important facet of the behaviour of many physical systems. This statement is particularly valid when considering the behaviour of machine tool slideways. Most slideway elements consist of two plain surfaces whose friction characteristic is modified by the addition of a lubricant. In many cases the complete slideway consists of many mating surfaces and the choice of slideway material, slideway machining and lubricant is often influenced by the long term problem of wear. The aim of this paper is to present results of experiments on a test rig designed to be representative of machine tool slideway conditions; the experiments were wholly concerned with the behaviour of the bearing under dynamic conditions. The major emphasis is on results obtained with a polar additive lubricant which appears to exclude the possibility of ‘stick-slip’ oscillations. A parallel series of tests are reported where a normal hydraulic oil was used as lubricant. The use of this second lubricant allowed some study of the ‘stick-slip’ process. The dynamic friction characteristics, cyclic friction characteristics and damping capacity of several slideway surface combinations have been obtained and are discussed in the context of earlier work in the field and the role of slideways in machine tool behaviour.


Author(s):  
Daniel Popescu

The paper presents a mathematical model for analysis of friction between the tool bearing saddle and conductor at CNC lathe. The analysis of longitudinal advance movement laws is performed taking into account the appearance and development of disturbing harmonic forces created by auto-vibrations determined by the interaction between the partial elastic systems of tool and workpiece. The friction force is emphasized as product of two components depending on the sliding speed and on the normal disturbing force. By establishing the dynamic response of the system, when the normal force depends linearly on speed, acceleration and mobile ensemble position, the premises are created for stability analysis of the friction movement, obtaining the limit speeds under which the stick-slip phenomenon occurs. Thus, it is provided for a rational design of CNC lathe elastic structure, in order to improve the surface quality and the dimensional precision.


2020 ◽  
Author(s):  
Banuvathy Rajakumar ◽  
Varadhan SKM

AbstractBackgroundThe human hand plays a crucial role in accomplishing activities of daily living. The contribution of each finger in the human hand is remarkably unique in establishing object stabilization. According to the mechanical advantage hypothesis, the little finger tends to exert a greater normal force than the ring finger during a supination moment production task to stabilize the object. Similarly, during pronation, the index finger produces more normal force when compared with the middle finger. Hence, the central nervous system employs the peripheral fingers for torque generation to establish the equilibrium as they have a mechanical advantage of longer moment arms for normal force. In our study, we tested whether the mechanical advantage hypothesis is supported in a task in which the contribution of thumb was artificially reduced. We also computed the safety margin of the individual fingers and thumb.MethodologyFifteen participants used five-finger prismatic precision grip to hold a custom-built handle with a vertical railing on the thumb side. A slider platform was placed on the railing such that the thumb sensor could move either up or down. There were two experimental conditions. In the “Fixed” condition, the slider was mechanically fixed, and hence the thumb sensor could not move. In the “Free” condition, the slider platform on which the thumb sensor was placed could freely move. In both conditions, the instruction was to grasp and hold the handle (and the platform) in static equilibrium. We recorded tangential and normal forces of all the fingers.ResultsThe distribution of fingertip forces and moments changed depending on whether the thumb platform was movable (or not). In the free condition, the drop in the tangential force of thumb was counteracted by an increase in the normal force of the ring and little finger. Critically, the normal forces of the ring and little finger were statistically equivalent. The safety margin of the index and middle finger did not show a significant drop in the free condition when compared to fixed condition.ConclusionWe conclude that our results does not support the mechanical advantage hypothesis at least for the specific mechanical task considered in our study. In the free condition, the normal force of little finger was comparable to the normal force of the ring finger. Also, the safety margin of the thumb and ring finger increased to prevent slipping of the thumb platform and to maintain the handle in static equilibrium during the free condition. However, the rise in the safety margin of the ring finger was not compensated by a drop in the safety margin of the index and middle finger.


2017 ◽  
Vol 2017 ◽  
pp. 1-18 ◽  
Author(s):  
Dejian Meng ◽  
Lijun Zhang ◽  
Jie Xu ◽  
Zhuoping Yu

To improve the understanding of brake creep groan, both experimental and numerical studies are conducted in this paper. Based on a vehicle road test under the condition of downhill, complicated stick-slip type motion of caliper and its correlation with the interior noise were analyzed. In order to duplicate these brake creep groan phenomena, a transient dynamic model including brake corner and subsystems was established using finite element method. In the model, brake components were considered to be flexible body, and the subsystems including driveline, suspension, tire, and vehicle body were considered to be rigid body. Simulation and experimental results of caliper vibration in time and frequency domains were compared. It was demonstrated that the new model is effective for the prediction and analysis of brake creep groan, and it has higher accuracy compared to the previous model without the subsystems. It is also found that the lining and caliper not only have stick-slip motion in each coordinate direction but also have translational and torsional movements in plane, which relate to the microscopic sticking and slipping, friction coefficient, and forces, as well as the contact status at the friction interface.


2015 ◽  
Author(s):  
Melissa E. Tribou ◽  
Geoffrey Swain

Ship hull grooming is proposed as an environmentally friendly method of controlling fouling on ship hulls. It is defined as the frequent and gentle cleaning of a coating when the ship is idle to prevent the Establishment of fouling. Prior research by Tribou and Swain has evaluated the effectiveness of different methods and the frequency of grooming on different types of ship hull coatings. It was found that vertical rotating cup style Brushes provided the best method to maintain the coatings in a smooth and fouling free condition. This study investigated brush design and operational parameters in relationship to normal forces imparted by the brushes to the surface. A brush stiffness factor was developed and the independent variables for brush design non-dimensionalized for the normal force. A load cell was used to measure the forces imparted by different brushes and the models were validated using these non-dimensional terms. The knowledge gained by these studies will be used to optimize brush design for the implementation of grooming.


2014 ◽  
Vol 752 ◽  
pp. 649-669 ◽  
Author(s):  
L. Divaret ◽  
O. Cadot ◽  
P. Moussou ◽  
O. Doaré

AbstractThis work aims to improve understanding of the damping induced by an axial flow on a rigid cylinder undergoing small lateral oscillations within the framework of the quasistatic assumption. The study focuses on the normal force exerted on the cylinder for a Reynolds number of $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}\mathit{Re}=24\, 000$ (based on the cylinder diameter and axial flow velocity). Both dynamic and static approaches are investigated. With the static approach, fluid forces, pressure distributions and velocity fields are measured for different yaw angles and cylinder lengths in a wind tunnel. It is found that for yaw angles smaller than $5{^\circ }$, the normal force varies linearly with the angle and is fully dominated by its lift component. The lift originates from the high pressure coefficient at the front of the cylinder, which is found to depend linearly on the angle, and from a base pressure coefficient that remains close to zero independent of the yaw angle. At the base, a flow deficit and two counter-rotating vortices are observed. A numerical simulation using a $k\mbox{--}\omega $ shear stress transport turbulence model confirms the static experimental results. A dynamic experiment conducted in a water tunnel brings out damping-rate values during free oscillations of the cylinder. As expected from the linear dependence of the normal force on the yaw angle observed with the static approach, the damping rate increases linearly with the axial flow velocity. Satisfactory agreement is found between the two approaches.


1999 ◽  
Vol 121 (4) ◽  
pp. 488-494 ◽  
Author(s):  
S. K. Lee ◽  
P. R. White

Impulsive sound and vibration signals in gears are often associated with faults which result from impacting and as such these impulsive signals can be used as indicators of faults. However it is often difficult to make objective measurements of impulsive signals because of background noise signals. In order to ease the measurement of impulsive sounds embedded in background noise, it is proposed that the impulsive signals are enhanced, via a two stage ALE (Adaptive Line Enhancer), and that these enhanced signals are then analyzed in the time and frequency domains using a Wigner higher order time-frequency representation. The effectiveness of this technique is demonstrated by application to gear fault data.


Author(s):  
Emmanuel Rigaud ◽  
Joël Perret-Liaudet

Abstract This paper concerns the non-linear dynamic response of a vibro-impacting Hertzian contact. Sinusoidal and random external normal forces are considered. We focus on the primary resonance and include vibro-impact responses in order to analyze the main characteristics of the system associated to both Hertzian and contact loss non-linearities. Under very small input amplitude, contact exhibits an almost linear resonance. Linearized resonance frequency and damping ratio are identified. Increasing the external input amplitude, the softening behaviour induced by Hertzian nonlinear stiffness is clearly demonstrated for both sinusoidal and random inputs. For higher input amplitude, system exhibits vibro-impacts. The contact loss non-linearity strongly governs the dynamic behaviour of the system.


Author(s):  
Dirk Drees ◽  
Satish Achanta

Friction at different force, length, and time scales is of great interest in tribology. The mechanical, chemical, and physical (atomic) interactions, each operating at their own time length and force scale, makes friction complex. This work is an attempt to improve the understanding of friction at normal forces ranging from nN up to N. This investigation was carried out under reciprocating ball-on-flat sliding conditions on engineering surfaces like diamond-like carbon (DLC) and dual phase steel. The test equipments used for this investigation are an atomic force microscope, a microtribometer, and a macrofretting tester. It was observed that for a hard/hard tribocouple like DLC/Si3N4, the variation in the coefficient of friction is negligible whereas the variation is large when the tribocouple is hard / soft like in dual phase steel / Si3N4. By changing the surface roughness of the material, the dependence of friction on normal force could be altered or manipulated.


2006 ◽  
Vol 128 (5) ◽  
pp. 666-671 ◽  
Author(s):  
Z. S. Chen ◽  
Y. M. Yang ◽  
Z. Hu ◽  
G. J. Shen

Vibration signals of complex rotating machinery are often cyclostationary, so in this paper one novel method is proposed to detect and predict early faults based on the linear (almost) periodically time-varying autoregressive (LPTV-AR) model. At first the algorithms of identifying model parameters and order are presented using the higher-order cyclic-cumulant, which can suppress additive stationary noises and improve the signal to noise ratio (SNR). Then numerical simulations are done and the results indicate that this model is more effective for cyclostationary signals than the classical AR model. In the end the proposed method is used for detecting incipient gear crack fault in a helicopter gearbox. The results demonstrate that the approach can be used to detect and predict early faults of complex rotating machinery by the kurtosis of the residual signal.


Sign in / Sign up

Export Citation Format

Share Document