scholarly journals Spectrophotometric determination of some pharmaceutical piperazine derivatives by charge-transfer and ion-pair complexation methods

2002 ◽  
Vol 70 (3) ◽  
pp. 253-269 ◽  
Author(s):  
Issa Y.M. ◽  
Abou-Attia F.M. ◽  
Abdel-Gawad F.M. ◽  
Abdel-Hamid S.M.

Simple and sensitive spectropliotometric methods are described for the assay of three piperazine derivatives ketoconazole, trimetazidine hydrochloride and piribedil based on cliarge-transfer and ion-pair complexation reactions. The first method is based on the reaction of the basic drug with iodine as o-acceptor in dry 1,2-dichloroethane to form a yellow colour due to the formation of charge-transfer complex showing maximum absorbence at 363, 364 and 359 nm for ketoconazole, trimetazidine hydrochlorid and piribedil, respectively. The second method is based on the reaction of basic drug with bromocresol green (BCG) in dry 1,2- dichloroethane to form a stable yellow coloured complex with maximum absorbance at 407, 408 and 410 nm for ketoconazol, trimetazidine hydrochloride and piribedil, respectively. Beer's law was obeyed for both methods and the relative standard deviations were found to be less than 1%. The two methods can be applied for the analysis of tablets and cream, with no evidence of interference from excipients. A more detailed investigation of the complex was made with respect to its composition association constant and free energy cliange.

2002 ◽  
Vol 70 (4) ◽  
pp. 341-351 ◽  
Author(s):  
Khalil Shaban M.

Summary Two simple and sensitive spectrophotometric methods are described for the assay of trimebutine. The first method is based on the interaction of the basic drug in 1,2 dichloroethane with bromocresol green (BCG); bromophenol blue (BPB) and bromothymol blue (BTB) in the same solvent to produce a stable yellow ion-pair complexes , which absorbed at 410,406 and 405nm, respectively. The second method is based upon the interaction of the basic drug with iodine in 1,2 dichloroethane. The yellow colour formed due to the formation of charge-transfer complex showed two maxima absorbed at 292 and 362 nm. Beer's law obeyed for both methods and the relative standard deviations were found to be less than 1 %. The two methods can be applied to the analysis of tablets, with no evidence of interference from excipients. A more detailed investigation on the complex was made to its composition, association constant and free energy change.


2009 ◽  
Vol 92 (1) ◽  
pp. 131-137 ◽  
Author(s):  
Zeynep Aydomu ◽  
Asli Barla

Abstract Two accurate, easy spectrophotometric methods for the determination of doxazosin mesylate were described. The first method was based on the formation of ion-pair complexes with the acidic sulfophthalein dyes bromocresol purple (BCP) and bromophenol blue (BPB) in pH 3.3 and 4.5 citratephosphate buffer, respectively. The formed complexes were extracted into dichloromethane, and their absorbance was measured at 403 and 410 nm for BCP and BPB, respectively. The second method was based on the charge transfer reaction of the drug as an n-electron donor with either 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) or 7,7,8,8-tetracyanoquinodimethane (TCNQ) as -acceptors, to give colored radical anions. The absorbances of products were measured at 457 nm in acetonitrile and 838 nm in methanol for DDQ and TCNQ, respectively. Under the optimum reaction conditions, Beer's law was obeyed with a good correlation coefficient (r = 0.99970.9999) in the concentration ranges 3.018.0, 3.020.0, 15.095.0, and 10.0100.0 g/mL for the BCP, BPB, DDQ, and TCNQ methods, respectively. Limits of detection of the BCP, BPB, DDQ, and TCNQ methods were 0.314, 0.408, 1.935, and 1.610 g/mL, respectively. The limits of quantification were 1.045, 1.360, 6.449, and 5.367 g/mL, respectively. The parameters molar absorptivity, precision, accuracy, recovery, robustness, and stability constant were studied. The proposed methods were successfully applied for determination of the drug in tablets with good accuracy and precision. Statistical comparison of the results with those obtained by a reported method showed good agreement and indicated no significant difference in accuracy and precision.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Ayman A. Gouda ◽  
Ragaa El Sheikh ◽  
Rham M. El-Azzazy

Three simple, sensitive, and accurate spectrophotometric methods have been developed for the determination of eletriptan hydrobromide (ELT) in pure and dosage forms. The first two methods are based on charge transfer complex formation between ELT and chromogenic reagents quinalizarin (Quinz) and alizarin red S (ARS) producing charge transfer complexes which showed an absorption maximum at 569 and 533 nm for Quinz and ARS, respectively. The third method is based on the formation of ion-pair complex between ELT with molybdenum(V)-thiocyanate inorganic complex in hydrochloric acid medium followed by extraction of the colored ion-pair with dichloromethane and measured at 470 nm. Different variables affecting the reactions were studied and optimized. Beer's law is obeyed in the concentration ranges 2.0–18, 1.0–8.0, and 2.0–32 μg mL−1for Quinz, ARS, and Mo(V)-thiocyanate, respectively. The molar absorptivity, Sandell sensitivity, detection, and quantification limits are also calculated. The correlation coefficients were ≥0.9994 with a relative standard deviation (R.S.D%.) of ≤0.925. The proposed methods were successfully applied for simultaneous determination of ELT in tablets with good accuracy and precision and without interferences from common additives, and the validity is assessed by applying the standard addition technique, which is compared with those obtained using the reported method.


2012 ◽  
Vol 2012 ◽  
pp. 1-5
Author(s):  
Mehdi Taghdiri ◽  
Yadollah Yamini ◽  
Ali Moloudi

A sensitive spectrophotometric method for the determination of methenamine has been developed without any separation steps. Bromocresol green is adsorbed on Sephadex LH-20 gel but the sorption decreases in the presence of methenamine due to ion-pair formation between bromocresol green and methenamine in solution. This attenuation was used to the microdetermination of methenamine by measurement of absorbance of the solid phase (Sephadex LH-20 gel) in a 1.0 mm cell at 625 nm. Methenamine could be determined in the concentration range of 0.42–1.68 μg mL−1 (10-mL Sample volume) with a relative standard deviation (RSD) of 0.03% (n=4). The detection limit obtained was 50 μg L−1 for 10 mL sample volume. The method was used for determination of methenamine in industrial wastewater and a satisfactory result was obtained.


2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
Mehdi Taghdiri ◽  
Arash Mohamadipour-taziyan

A sensitive spectrophotometric method for the determination of dopamine was carried out without any separation steps. Bromocresol green is adsorbed on Sephadex LH-20 gel but the sorption decreases in the presence of dopamine due to ion-pair formation between bromocresol green and dopamine in solution. This attenuation was used to the microdetermination of dopamine by measurement of absorbance of the solid phase (Sephadex LH-20 gel) in a 1.0 mm cell at 625 nm. Dopamine could be determined in the concentration range of 0.4–1.6 μg mL−1 (10-mL Sample volume) with a relative standard deviation (RSD) of 0.03% (). The detection limit was obtained, 0.26 μg mL−1 (1.7 μM). The method was used for determination of dopamine in pharmaceutical injection sample and satisfactory result was obtained.


2013 ◽  
Vol 2013 ◽  
pp. 1-6
Author(s):  
Hemavathi Nagaraju Deepakumari ◽  
Hosakere Doddarevanna Revanasiddappa

The aim of study was to develop and validate two simple, sensitive, and extraction-free spectrophotometric methods for the estimation of risperidone in both pure and pharmaceutical preparations. They are based on the charge transfer complexation reactions between risperidone (RSP) as n-electron donor and p-chloranilic acid (p-CA) in method A and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) in method B as π-acceptors. In method A, RSP reacts with p-CA in methanol to produce a bright pink-colored chromogen measured at 530 nm whereas, in method B, RSP reacts with DDQ in dichloromethane to form orange-colored complex with a maximum absorption at 460 nm. Beer's law was obeyed in the concentration range of 0–25 and 0–50 μg/mL with molar absorptivity of and L/moL/cm for RSP in methods A and B, respectively. The effects of variables such as reagents, time, and stability of the charge transfer complexes were investigated to optimize the procedures. The proposed methods have been successfully applied to the determination of RSP in pharmaceutical formulations. Results indicate that the methods are accurate, precise, and reproducible (relative standard deviation %).


2020 ◽  
Vol 16 ◽  
Author(s):  
Sheng-Yun Li ◽  
Fang Tian

: A spectrophotometry was investigated for the determination of epsilon aminocaproic acid (EACA) with p-nitrophenol (PNP). The method was based on a charge transfer (CT) complexation of this drug as n-electron donor with π-acceptor PNP. Experiment indicated that the CT complexation was carried out at room temperature for 10 minutes in dimethyl sulfoxide solvent. The spectrum obtained for EACA/PNP system showed the maximum absorption band at wavelength of 425 nm. The stoichiometry of the CT complex was found to be 1:1 ratio by Job’s method between the donor and the acceptor. Different variables affecting the complexation were carefully studied and optimized. At the optimum reaction conditions, Beer’s law was obeyed in a concentration limit of 1~6 µg mL-1. The relative standard deviation was less than 2.9%. The apparent molar absoptivity was determined to be 1.86×104 L mol-1cm-1 at 425 nm. The CT complexation was also confirmed by both FTIR and 1H NMR measurements. The thermodynamic properties and reaction mechanism of the CT complexation have been discussed. The developed method could be applied successfully for the determination of the studied compound in its pharmaceutical dosage forms with a good precision and accuracy compared to official method as revealed by t- and F-tests.


2012 ◽  
Vol 18 (2) ◽  
pp. 339-347 ◽  
Author(s):  
Sameer Abdulrahman ◽  
Kanakapura Basavaiah

Two simple, sensitive and extraction-free spectrophotometric methods are described for the determination of dothiepin hydrochloride (DOTH) both in pure form and in pharmaceutical tablets. The methods are based on ion-pair complex formation between dothiepin base (DOT) and two acidic dyes, namely, bromophenol blue (BPB) or bromocresol green (BCG) with absorption maximum at 425 nm for BPB method or 430 nm for BCG method. Beer?s law is obeyed over the concentration ranges of 1.0-15.0 and 1.0-17.5 ?g mL-1 DOT for BPB and BCG methods, respectively. The molar absorptivity values and Sandell?s sensitivity values are reported for both methods. The limits of detection (LOD) and quantification (LOQ) were calculated to be 0.18 and 0.53 ?g mL-1 for BPB method, and 0.17 and 0.50 ?g mL-1 for BCG method, respectively. The stoichiometry of the complex in either case was found to be 1: 1 and the conditional stability constant (KF) of the complexes has also been calculated. The proposed methods were applied successfully to the determination of DOTH in pure form and in its tablet form with good accuracy and precision. Statistical comparison of the results was performed using Student's t-test and variance ratio F-test at 95% confidence level and there was no significant difference between the official and proposed methods with regard to accuracy and precision. Further, the validity of the proposed methods was confirmed by recovery studies via standard addition technique.


Sign in / Sign up

Export Citation Format

Share Document