scholarly journals Numerical simulation of the interaction between combustion products of a cartridge pressure accumulator and oxygen in the launch container

Author(s):  
R. A. Peshkov ◽  
D. R. Ismagilov

The paper introduces a mathematical model for calculating the gas-dynamic parameters in the launch container. The model takes into account chemical interactions between the main components of the combustion products, i.e. carbon monoxide and hydrogen, and oxygen. The resulting energy can be used to increase the initiating pulse of the rocket. Within the research, we described the basic requirements for the grid model, and analyzed the accuracy of the results obtained. Furthermore, we compared calculation data of pressure in the launch container with the results of the known method. Findings of research show that the use of two-dimensional and three-dimensional models makes it possible to obtain not only medium-volume gas-dynamic parameters, such as pressure, temperature, density, but also the distribution of these parameters over the computational domain. The developed method of numerical simulation will allow us to estimate the effect of changes in the configuration of the sub-rocket volume and other parameters on the dynamics of the rocket movement without conducting an expensive experiment

Open Physics ◽  
2021 ◽  
Vol 19 (1) ◽  
pp. 327-330
Author(s):  
Li Yang ◽  
Bo Zhang ◽  
Jiří Jaromír Klemeš ◽  
Jie Liu ◽  
Meiyu Song ◽  
...  

Abstract Many researchers numerically investigated U-tube underground heat exchanger using a two-dimensional simplified pipe. However, a simplified model results in large errors compared to the data from construction sites. This research is carried out using a three-dimensional full-size model. A model validation is conducted by comparing with experimental data in summer. This article investigates the effects of fluid velocity and buried depth on the heat exchange rate in a vertical U-tube underground heat exchanger based on fluid–structure coupled simulations. Compared with the results at a flow rate of 0.4 m/s, the results of this research show that the heat transfer per buried depth at 1.0 m/s increases by 123.34%. With the increase of the buried depth from 80 to 140 m, the heat transfer per unit depth decreases by 9.72%.


1998 ◽  
Vol 25 (4) ◽  
pp. 621-630 ◽  
Author(s):  
Yasser Hassan ◽  
Said M Easa

Coordination of highway horizontal and vertical alignments is based on subjective guidelines in current standards. This paper presents a quantitative analysis of coordinating horizontal and sag vertical curves that are designed using two-dimensional standards. The locations where a horizontal curve should not be positioned relative to a sag vertical curve (called red zones) are identified. In the red zone, the available sight distance (computed using three-dimensional models) is less than the required sight distance. Two types of red zones, based on stopping sight distance (SSD) and preview sight distance (PVSD), are examined. The SSD red zone corresponds to the locations where an overlap between a horizontal curve and a sag vertical curve should be avoided because the three-dimensional sight distance will be less than the required SSD. The PVSD red zone corresponds to the locations where a horizontal curve should not start because drivers will not be able to perceive it and safely react to it. The SSD red zones exist for practical highway alignment parameters, and therefore designers should check the alignments for potential SSD red zones. The range of SSD red zones was found to depend on the different alignment parameters, especially the superelevation rate. On the other hand, the results showed that the PVSD red zones exist only for large values of the required PVSD, and therefore this type of red zones is not critical. This paper should be of particular interest to the highway designers and professionals concerned with highway safety.Key words: sight distance, red zone, combined alignment.


2006 ◽  
Vol 128 (9) ◽  
pp. 945-952 ◽  
Author(s):  
Sandip Mazumder

Two different algorithms to accelerate ray tracing in surface-to-surface radiation Monte Carlo calculations are investigated. The first algorithm is the well-known binary spatial partitioning (BSP) algorithm, which recursively bisects the computational domain into a set of hierarchically linked boxes that are then made use of to narrow down the number of ray-surface intersection calculations. The second algorithm is the volume-by-volume advancement (VVA) algorithm. This algorithm is new and employs the volumetric mesh to advance the ray through the computational domain until a legitimate intersection point is found. The algorithms are tested for two classical problems, namely an open box, and a box in a box, in both two-dimensional (2D) and three-dimensional (3D) geometries with various mesh sizes. Both algorithms are found to result in orders of magnitude gains in computational efficiency over direct calculations that do not employ any acceleration strategy. For three-dimensional geometries, the VVA algorithm is found to be clearly superior to BSP, particularly for cases with obstructions within the computational domain. For two-dimensional geometries, the VVA algorithm is found to be superior to the BSP algorithm only when obstructions are present and are densely packed.


1972 ◽  
Vol 1 (13) ◽  
pp. 146
Author(s):  
Joseph L. Hammack ◽  
Frederic Raichlen

A linear theory is presented for waves generated by an arbitrary bed deformation {in space and time) for a two-dimensional and a three -dimensional fluid domain of uniform depth. The resulting wave profile near the source is computed for both the two and three-dimensional models for a specific class of bed deformations; experimental results are presented for the two-dimensional model. The growth of nonlinear effects during wave propagation in an ocean of uniform depth and the corresponding limitations of the linear theory are investigated. A strategy is presented for determining wave behavior at large distances from the source where linear and nonlinear effects are of equal magnitude. The strategy is based on a matching technique which employs the linear theory in its region of applicability and an equation similar to that of Korteweg and deVries (KdV) in the region where nonlinearities are equal in magnitude to frequency dispersion. Comparison of the theoretical computations with the experimental results indicates that an equation of the KdV type is the proper model of wave behavior at large distances from the source region.


2016 ◽  
pp. 92-97
Author(s):  
R. E. Volkov ◽  
A. G. Obukhov

The rectangular parallelepiped explicit difference schemes for the numerical solution of the complete built system of Navier-Stokes equations. These solutions describe the three-dimensional flow of a compressible viscous heat-conducting gas in a rising swirling flows, provided the forces of gravity and Coriolis. This assumes constancy of the coefficient of viscosity and thermal conductivity. The initial conditions are the features that are the exact analytical solution of the complete Navier-Stokes equations. Propose specific boundary conditions under which the upward flow of gas is modeled by blowing through the square hole in the upper surface of the computational domain. A variant of parallelization algorithm for calculating gas dynamic and energy characteristics. The results of calculations of gasdynamic parameters dependency on the speed of the vertical blowing by the time the flow of a steady state flow.


2011 ◽  
pp. 130-174
Author(s):  
Burak Ozer ◽  
Tiehan Lv ◽  
Wayne Wolf

This chapter focuses on real-time processing techniques for the reconstruction of visual information from multiple views and its analysis for human detection and gesture and activity recognition. It presents a review of the main components of three-dimensional visual processing techniques and visual analysis of multiple cameras, i.e., projection of three-dimensional models onto two-dimensional images and three-dimensional visual reconstruction from multiple images. It discusses real-time aspects of these techniques and shows how these aspects affect the software and hardware architectures. Furthermore, the authors present their multiple-camera system to investigate the relationship between the activity recognition algorithms and the architectures required to perform these tasks in real time. The chapter describes the proposed activity recognition method that consists of a distributed algorithm and a data fusion scheme for two and three-dimensional visual analysis, respectively. The authors analyze the available data independencies for this algorithm and discuss the potential architectures to exploit the parallelism resulting from these independencies.


2019 ◽  
Vol 221 ◽  
pp. 01021
Author(s):  
Aleksandr Kraus ◽  
Evgeny Kraus ◽  
Ivan Shabalin

A two-dimensional and three-dimensional non-stationary problem of the interaction of a homogeneous impactor and a heterogeneous structure made of steel and ceramics and placed in a Kevlar pocket is considered. The model of the human body is a plate of gelatine with cylindrical inserts-imitators of human bones. The results of numerical simulation using different approaches for describing heterogeneous media are compared. On the basis of direct numerical simulation, it is shown that the gradient armor plate (steel + B4C) has the best weight and size parameters.


Sign in / Sign up

Export Citation Format

Share Document