scholarly journals Photospheric Prompt Emission From Long Gamma-ray Burst Simulations. I. Optical Emission

2021 ◽  
Vol 922 (2) ◽  
pp. 257
Author(s):  
Tyler Parsotan ◽  
Davide Lazzati

Abstract A complete understanding of gamma-ray bursts (GRBs) has been difficult to achieve, due to our incomplete knowledge of the radiation mechanism that is responsible for producing the prompt emission. This emission, which is detected in the first tens of seconds of the GRB, is typically dominated by hard X-ray and gamma-ray photons, although there have also been a few dozen prompt optical detections. These optical detections have the potential to discriminate between plausible prompt emission models, such as the photospheric and synchrotron shock models. In this work, we use an improved MCRaT code, which includes cyclo-synchrotron emission and absorption, to conduct radiative transfer calculations from optical to gamma-ray energies under the photospheric model. The calculations are conducted using a set of two-dimensional relativistic hydrodynamic long GRB jet simulations, consisting of a constant and a variable jet. We predict the correlations between the optical and gamma-ray light curves as functions of observer angle and jet variability, and find that there should be extremely dim optical prompt precursors for large viewing angles. Additionally, the detected optical emission originates from dense regions of the outflow, such as shock interfaces and the jet-cocoon interface. Our results also show that the photospheric model is unable to account for the current set of optical prompt detections that have been made and therefore additional radiative mechanisms are needed to explain these prompt optical observations. These findings show the importance of conducting global radiative transfer simulations using hydrodynamically calculated jet structures.

2019 ◽  
Vol 489 (1) ◽  
pp. 13-27
Author(s):  
R A J Eyles ◽  
P T O’Brien ◽  
K Wiersema ◽  
R L C Starling ◽  
B P Gompertz ◽  
...  

ABSTRACT We present X-ray and optical observations of the short duration gamma-ray burst GRB 071227 and its host at z = 0.381, obtained using Swift, Gemini South, and the Very Large Telescope. We identify a short-lived and moderately bright optical transient, with flux significantly in excess of that expected from a simple extrapolation of the X-ray spectrum at 0.2–0.3 d after burst. We fit the SED with afterglow models allowing for high extinction and thermal emission models that approximate a kilonova to assess the excess’ origins. While some kilonova contribution is plausible, it is not favoured due to the low temperature and high luminosity required, implying superluminal expansion and a large ejecta mass of ∼0.1 M$\odot$. We find, instead, that the transient is broadly consistent with power-law spectra with additional dust extinction of E(B − V) ∼ 0.4 mag, although a possibly thermal excess remains in the z band. We investigate the host, a spiral galaxy with an edge-on orientation, resolving its spectrum along its major axis to construct the galaxy rotation curve and analyse the star formation and chemical properties. The integrated host emission shows evidence for high extinction, consistent with the afterglow findings. The metallicity and extinction are consistent with previous studies of this host and indicate the galaxy is a typical, but dusty, late-type SGRB host.


2003 ◽  
Vol 214 ◽  
pp. 311-320
Author(s):  
Bing Zhang ◽  
Peter Mészáros ◽  
Junfeng Wang

Extensive observational campaigns of afterglow hunting have greatly enriched our understanding of the gamma-ray burst (GRB) phenomenon. Efforts have been made recently to explore some afterglow properties or signatures that will be tested by the on-going or the future observational campaigns yet come. These include the properties of GRB early afterglows in the temporal domain; the GeV-TeV afterglow signatures in the spectral domain; as well as a global view about the GRB universal structured jet configuration. These recent efforts are reviewed. Within the standard cosmological fireball model, the very model(s) responsible for the GRB prompt emission is (are) not identified. These models are critically reviewed and confronted with the current data.


2010 ◽  
Vol 6 (S275) ◽  
pp. 344-348
Author(s):  
Giancarlo Ghirlanda

AbstractThe correlations between the rest frame peak of the νFν spectrum of GRBs (Epeak) and their isotropic energy (Eiso) or luminosity (Liso) could have several implications for the understanding of the GRB prompt emission. These correlations are presently founded on the time–averaged spectral properties of a sample of 95 bursts, with measured redshifts, collected by different instruments in the last 13 years (pre–Fermi). One still open issue is wether these correlations have a physical origin or are due to instrumental selection effects. By studying 10 long and 14 short GRBs detected by Fermi we find that a strong time–resolved correlation between Epeak and the luminosity Liso is present within individual GRBs and that it is consistent with the time–integrated correlation. This result is a direct proof of the existence in both short and long GRBs of a similar physical link between the hardness and the luminosity which is not due to instrumental selection effects. The origin of the Epeak – Liso correlation should be searched in the radiation mechanism of the prompt emission.


Author(s):  
MICHEL BOËR

The prompt emission of gamma-ray burst sources is still the main means of detection, and a privilegied access to the souce dynamics. It is detected from radio to GeV energies, and its study is crucial for the overall understanding of the phenomenom. We present here a panorama of the rapid optical observations, and what can be infered from the data. We will discuss also the new instruments which are planned for the observation of the prompt and early afterglow at optical and infrared wavelengths, with spectral capabilities.


2014 ◽  
Vol 23 (02) ◽  
pp. 1430002 ◽  
Author(s):  
BING ZHANG

The origin of gamma-ray burst (GRB) prompt emission, bursts of γ-rays lasting from shorter than one second to thousands of seconds, remains not fully understood after more than 40 years of observations. The uncertainties lie in several open questions in the GRB physics, including jet composition, energy dissipation mechanism, particle acceleration mechanism and radiation mechanism. Recent broad-band observations of prompt emission with Fermi sharpen the debates in these areas, which stimulated intense theoretical investigations invoking very different ideas. I will review these debates, and argue that the current data suggest the following picture: A quasi-thermal spectral component originating from the photosphere of the relativistic ejecta has been detected in some GRBs. Even though in some cases (e.g. GRB 090902B) this component dominates the spectrum, in most GRBs, this component either forms a sub-dominant "shoulder" spectral component in the low energy spectral regime of the more dominant "Band" component, or is not detectable at all. The main "Band" spectral component likely originates from the optically thin region due to synchrotron radiation. The diverse magnetization in the GRB central engine is likely the origin of the observed diverse prompt emission properties among bursts.


2019 ◽  
Vol 628 ◽  
pp. A59 ◽  
Author(s):  
G. Oganesyan ◽  
L. Nava ◽  
G. Ghirlanda ◽  
A. Melandri ◽  
A. Celotti

Information on the spectral shape of prompt emission in gamma-ray bursts (GRB) is mostly available only at energies ≳10 keV, where the main instruments for GRB detection are sensitive. The origin of this emission is still very uncertain because of the apparent inconsistency with synchrotron radiation, which is the most obvious candidate, and the resulting need for considering less straightforward scenarios. The inclusion of data down to soft X-rays (∼0.5 keV), which are available only in a small fraction of GRBs, has firmly established the common presence of a spectral break in the low-energy part of prompt spectra, and even more importantly, the consistency of the overall spectral shape with synchrotron radiation in the moderately fast-cooling regime, the low-energy break being identified with the cooling frequency. In this work we further extend the range of investigation down to the optical band. In particular, we test the synchrotron interpretation by directly fitting a theoretically derived synchrotron spectrum and making use of optical to gamma-ray data. Secondly, we test an alternative model that considers the presence of a black-body component at ∼keV energies, in addition to a non-thermal component that is responsible for the emission at the spectral peak (100 keV–1 MeV). We find that synchrotron radiation provides a good description of the broadband data, while models composed of a thermal and a non-thermal component require the introduction of a low-energy break in the non-thermal component in order to be consistent with optical observations. Motivated by the good quality of the synchrotron fits, we explore the physical parameter space of the emitting region. In a basic prompt emission scenario we find quite contrived solutions for the magnetic field strength (5 G < B′< 40 G) and for the location of the region where the radiation is produced (Rγ >  1016 cm). We discuss which assumptions of the basic model would need to be relaxed in order to achieve a more natural parameter space.


2008 ◽  
Author(s):  
Bing Zhang ◽  
Yong-Feng Huang ◽  
Zi-Gao Dai ◽  
Bing Zhang

Author(s):  
K Misra ◽  
L Resmi ◽  
D A Kann ◽  
M Marongiu ◽  
A Moin ◽  
...  

Abstract We present radio and optical afterglow observations of the TeV-bright long Gamma Ray Burst (GRB) 190114C at a redshift of z = 0.425, which was detected by the MAGIC telescope. Our observations with ALMA, ATCA, and uGMRT were obtained by our low frequency observing campaign and range from ∼1 to ∼140 days after the burst and the optical observations were done with three optical telescopes spanning up to ∼25 days after the burst. Long term radio/mm observations reveal the complex nature of the afterglow, which does not follow the spectral and temporal closure relations expected from the standard afterglow model. We find that the microphysical parameters of the external forward shock, representing the share of shock-created energy in the non-thermal electron population and magnetic field, are evolving with time. The inferred kinetic energy in the blast-wave depends strongly on the assumed ambient medium density profile, with a constant density medium demanding almost an order of magnitude higher energy than in the prompt emission, while a stellar wind-driven medium requires approximately the same amount energy as in prompt emission.


Author(s):  
G. E. Anderson ◽  
P. J. Hancock ◽  
A. Rowlinson ◽  
M. Sokolowski ◽  
A. Williams ◽  
...  

Abstract Here we present stringent low-frequency (185 MHz) limits on coherent radio emission associated with a short-duration gamma-ray burst (SGRB). Our observations of the short gamma-ray burst (GRB) 180805A were taken with the upgraded Murchison Widefield Array (MWA) rapid-response system, which triggered within 20s of receiving the transient alert from the Swift Burst Alert Telescope, corresponding to 83.7 s post-burst. The SGRB was observed for a total of 30 min, resulting in a $3\sigma$ persistent flux density upper limit of 40.2 mJy beam–1. Transient searches were conducted at the Swift position of this GRB on 0.5 s, 5 s, 30 s and 2 min timescales, resulting in $3\sigma$ limits of 570–1 830, 270–630, 200–420, and 100–200 mJy beam–1, respectively. We also performed a dedispersion search for prompt signals at the position of the SGRB with a temporal and spectral resolution of 0.5 s and 1.28 MHz, respectively, resulting in a $6\sigma$ fluence upper-limit range from 570 Jy ms at DM $=3\,000$ pc cm–3 ( $z\sim 2.5$ ) to 1 750 Jy ms at DM $=200$ pc cm–3 ( $z\sim 0.1)$ , corresponding to the known redshift range of SGRBs. We compare the fluence prompt emission limit and the persistent upper limit to SGRB coherent emission models assuming the merger resulted in a stable magnetar remnant. Our observations were not sensitive enough to detect prompt emission associated with the alignment of magnetic fields of a binary neutron star just prior to the merger, from the interaction between the relativistic jet and the interstellar medium (ISM) or persistent pulsar-like emission from the spin-down of the magnetar. However, in the case of a more powerful SGRB (a gamma-ray fluence an order of magnitude higher than GRB 180805A and/or a brighter X-ray counterpart), our MWA observations may be sensitive enough to detect coherent radio emission from the jet-ISM interaction and/or the magnetar remnant. Finally, we demonstrate that of all current low- frequency radio telescopes, only the MWA has the sensitivity and response times capable of probing prompt emission models associated with the initial SGRB merger event.


Galaxies ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 82
Author(s):  
Ramandeep Gill ◽  
Merlin Kole ◽  
Jonathan Granot

Over half a century from the discovery of gamma-ray bursts (GRBs), the dominant radiation mechanism responsible for their bright and highly variable prompt emission remains poorly understood. Spectral information alone has proven insufficient for understanding the composition and main energy dissipation mechanism in GRB jets. High-sensitivity polarimetric observations from upcoming instruments in this decade may help answer such key questions in GRB physics. This article reviews the current status of prompt GRB polarization measurements and provides comprehensive predictions from theoretical models. A concise overview of the fundamental questions in prompt GRB physics is provided. Important developments in gamma-ray polarimetry including a critical overview of different past instruments are presented. Theoretical predictions for different radiation mechanisms and jet structures are confronted with time-integrated and time-resolved measurements. The current status and capabilities of upcoming instruments regarding the prompt emission are presented. The very complimentary information that can be obtained from polarimetry of X-ray flares as well as reverse-shock and early to late forward-shock (afterglow) emissions are highlighted. Finally, promising directions for overcoming the inherent difficulties in obtaining statistically significant prompt-GRB polarization measurements are discussed, along with prospects for improvements in the theoretical modeling, which may lead to significant advances in the field.


Sign in / Sign up

Export Citation Format

Share Document