scholarly journals Precise Timing and Phase-resolved Spectroscopy of the Young Pulsar J1617–5055 with NuSTAR

2021 ◽  
Vol 923 (2) ◽  
pp. 249
Author(s):  
Jeremy Hare ◽  
Igor Volkov ◽  
George G. Pavlov ◽  
Oleg Kargaltsev ◽  
Simon Johnston

Abstract We report on a Nuclear Spectroscopic Telescope Array (NuSTAR) observation of the young, energetic pulsar PSR J1617–5055. Parkes Observatory 3 GHz radio observations of the pulsar (taken about 7 yr before the NuSTAR observations) are also reported here. NuSTAR detected pulsations at a frequency of f ≈ 14.4 Hz (P ≈ 69.44 ms) and, in addition, the observation was long enough to measure the source’s frequency derivative, f ̇ ≈ − 2.8 × 10 − 11 Hz s−1. We find that the pulsar shows one peak per period at both hard X-ray and radio wavelengths, but that the hard X-ray pulse is broader (having a duty cycle of ∼0.7), than the radio pulse (having a duty cycle of ∼0.08). Additionally, the radio pulse is strongly linearly polarized. J1617's phase-integrated hard X-ray spectrum is well fit by an absorbed power-law model, with a photon index Γ = 1.59 ± 0.02. The hard X-ray pulsations are well described by three Fourier harmonics, and have a pulsed fraction that increases with energy. We also fit the phase-resolved NuSTAR spectra with an absorbed power-law model in five phase bins and find that the photon index varies with phase from Γ = 1.52 ± 0.03 at phases around the flux maximum to Γ = 1.79 ± 0.06 around the flux minimum. Last, we compare our results with other pulsars whose magnetospheric emission is detected at hard X-ray energies and find that, similar to previous studies, J1617's hard X-ray properties are more similar to the MeV pulsars than the GeV pulsars.

Universe ◽  
2020 ◽  
Vol 6 (11) ◽  
pp. 219
Author(s):  
Elena Fedorova ◽  
B.I. Hnatyk ◽  
V.I. Zhdanov ◽  
A. Del Popolo

3C111 is BLRG with signatures of both FSRQ and Sy1 in X-ray spectrum. The significant X-ray observational dataset was collected for it by INTEGRAL, XMM-Newton, SWIFT, Suzaku and others. The overall X-ray spectrum of 3C 111 shows signs of a peculiarity with the large value of the high-energy cut-off typical rather for RQ AGN, probably due to the jet contamination. Separating the jet counterpart in the X-ray spectrum of 3C 111 from the primary nuclear counterpart can answer the question is this nucleus truly peculiar or this is a fake “peculiarity” due to a significant jet contribution. In view of this question, our aim is to estimate separately the accretion disk/corona and non-thermal jet emission in the 3C 111 X-ray spectra within different observational periods. To separate the disk/corona and jet contributions in total continuum, we use the idea that radio and X-ray spectra of jet emission can be described by a simple power-law model with the same photon index. This additional information allows us to derive rather accurate values of these contributions. In order to test these results, we also consider relations between the nuclear continuum and the line emission.


Galaxies ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 58
Author(s):  
Nibedita Kalita ◽  
Alok C. Gupta ◽  
Minfeng Gu

We present the results of a temporal and spectral study of the BL Lacertae object OJ 287 in optical, UV, and X-ray bands with observations performed by Swift satellite during September 2019–March 2020. In this period, the source showed moderate variability characterized by variability amplitude of ∼22–31% in all the wavelengths on a short timescale, except the hard X-ray band which was variable by only ∼8%. We observed that the X-ray flux of the source was significantly dominated by the soft photons below 2 keV. Soft lags of ∼45 days were detected between the optical/UV and soft X-ray emissions, while there is no correlation between the hard X-rays and the lower energy bands indicating the presence of two emission components or electron populations. Although two components contribute to the X-ray emission, most of the 0.3–10 keV spectra were well fitted with an absorbed power-law model which outlines the dominance of synchrotron over inverse Compton (IC) mechanism. The X-ray spectra follow a weak “softer when brighter” trend.


2018 ◽  
Vol 620 ◽  
pp. L14 ◽  
Author(s):  
Jongsu Lee ◽  
C. Y. Hui ◽  
J. Takata ◽  
L. C. C. Lin

We have discovered an extended X-ray feature, apparently associated with millisecond pulsar (MSP) PSR J1911–1114. The feature, which extends for ∼1′, was discovered from an XMM-Newton observation; the radio timing position of PSR J1911–1114 is in the midpoint of the feature. The orientation of the feature is similar to the proper motion direction of PSR J1911–1114. Its X-ray spectrum can be well-modeled by an absorbed power law with a photon index of Γ = 1.8−+0.30.2. If this feature is confirmed to be a pulsar wind nebula (PWN), this will be the third case where an X-ray PWN has been found to be powered by a MSP.


2020 ◽  
Vol 496 (4) ◽  
pp. 5518-5527
Author(s):  
N Sahakyan

ABSTRACT The origin of the multiwavelength emission from the high-synchrotron-peaked BL Lac 1ES 1218+304 is studied using the data from SwiftUVOT/XRT, NuSTAR, and Fermi-LAT. A detailed temporal and spectral analysis of the data observed during 2008–2020 in the  γ-ray (>100 MeV), X-ray (0.3–70 keV), and optical/UV bands is performed. The γ-ray spectrum is hard with a photon index of 1.71 ± 0.02 above 100 MeV. The SwiftUVOT/XRT data show a flux increase in the UV/optical and X-ray bands; the highest 0.3–3 keV X-ray flux was (1.13 ± 0.02) × 10−10 erg cm−2 s−1. In the 0.3–10 keV range, the averaged X-ray photon index is >2.0 which softens to 2.56 ± 0.028 in the 3–50 keV band. However, in some periods, the X-ray photon index became extremely hard (<1.8), indicating that the peak of the synchrotron component was above 1 keV, and so 1ES 1218+304 behaved like an extreme synchrotron BL Lac. The hardest X-ray photon index of 1ES 1218+304 was 1.60 ± 0.05 on MJD 58489. The time-averaged multiwavelength spectral energy distribution is modelled within a one-zone synchrotron self-Compton leptonic model using a broken power law and power law with an exponential cutoff electron energy distributions. The data are well explained when the electron energy distribution is $E_{\rm e}^{-2.1}$ extending up to γbr/cut ≃ (1.7 − 4.3) × 105, and the magnetic field is weak (B ∼ 1.5 × 10−2 G). By solving the kinetic equation for electron evolution in the emitting region, the obtained electron energy distributions are discussed considering particle injection, cooling, and escape.


2019 ◽  
Vol 622 ◽  
pp. A211 ◽  
Author(s):  
Francesco Coti Zelati ◽  
Alessandro Papitto ◽  
Domitilla de Martino ◽  
David A. H. Buckley ◽  
Alida Odendaal ◽  
...  

We report on a multi-wavelength study of the unclassified X-ray source CXOU J110926.4−650224 (J1109). We identified the optical counterpart as a blue star with a magnitude of ∼20.1 (3300–10500 Å). The optical emission was variable on timescales from hundreds to thousands of seconds. The spectrum showed prominent emission lines with variable profiles at different epochs. Simultaneous XMM-Newton and NuSTAR observations revealed a bimodal distribution of the X-ray count rates on timescales as short as tens of seconds, as well as sporadic flaring activity. The average broad-band (0.3–79 keV) spectrum was adequately described by an absorbed power law model with photon index of Γ = 1.63  ±  0.01 (at 1σ c.l.), and the X-ray luminosity was (2.16  ±  0.04)  ×  1034 erg s−1 for a distance of 4 kpc. Based on observations with different instruments, the X-ray luminosity has remained relatively steady over the past ∼15 years. J1109 is spatially associated with the gamma-ray source FL8Y J1109.8−6500, which was detected with Fermi at an average luminosity of (1.5  ±  0.2)  ×  1034 erg s−1 (assuming the distance of J1109) over the 0.1–300 GeV energy band between 2008 and 2016. The source was undetected during ATCA radio observations that were simultaneous with NuSTAR, down to a 3σ flux upper limit of 18 μJy beam−1 (at 7.25 GHz). We show that the phenomenological properties of J1109 point to a binary transitional pulsar candidate currently in a sub-luminous accretion disk state, and that the upper limits derived for the radio emission are consistent with the expected radio luminosity for accreting neutron stars at similar X-ray luminosities.


1996 ◽  
Vol 165 ◽  
pp. 363-367
Author(s):  
W.S. Paciesas ◽  
S.N. Zhang ◽  
B.C. Rubin ◽  
B.A. Harmon ◽  
C.A. Wilson ◽  
...  

A bright transient X-ray source, GRO J1655-40 (X-ray Nova Scorpii 1994) was discovered with BATSE (the Burst and Transient Source Experiment) in late July 1994. More recently, the source also became a strong radio emitter, its rise in the radio being approximately anti-correlated with a decline in the hard X-ray intensity. High-resolution radio observations subsequent to this symposium showed evidence for superluminally expanding jets. Since the hard X-ray emission extends to at least 200 keV and we find no evidence of pulsations, we tentatively classify the source as a black-hole candidate. However, its hard X-ray spectrum is unusually steep (power-law photon index α ≃ −3) relative to most other black-hole candidates. In this regard, it resembles GRS 1915+105, the first galactic source to show superluminal radio jets.


2019 ◽  
Vol 491 (4) ◽  
pp. 5682-5692 ◽  
Author(s):  
Lupin Chun-Che Lin ◽  
Chin-Ping Hu ◽  
Kwan-Lok Li ◽  
Jumpei Takata ◽  
David Chien-Chang Yen ◽  
...  

ABSTRACT The long-term Swift monitoring of ESO 243–49 HLX−1 provides an opportunity to investigate the detailed timing and spectral behaviour of this hyperluminous X-ray source. Swift has detected seven outbursts since 2009 mid-August. Using different dynamical timing algorithms, we confirm an increasing trend for the time intervals between outbursts, which is manifest in the delays between the latest outbursts. The X-ray spectra of HLX−1 in quiescence can be described with a single power-law model while the thermal component dominates the X-ray emission during outburst. There is only marginal evidence for photon index (or spectral hardness) changes between quiescent states with about 1σ deviation. With the updated temporal and spectral features, we re-examine different scenarios to explain the origin of the quasi-periodic modulation of HLX−1. A significantly increasing trend without obvious stochastic fluctuations on the time-scale of the detected quasi-period may not fully support an orbital period origin as might be due to mass transfer episodes from a donor star at periastron of an extremely eccentric orbit. The outburst profile seems to be consistent with the effect of tidal-induced-precession of an accretion disc or an oscillating wind scenario in the inner disc. Based on these models, we speculate that the true orbital period is much shorter than the detected quasi-periodicity.


1998 ◽  
Vol 184 ◽  
pp. 479-480 ◽  
Author(s):  
Y. Terashima ◽  
H. Kunieda ◽  
P.J. Serlemitsos ◽  
A. Ptak

We present X-ray observations of LINERs with ASCA. We detected a hard point-like source of X-ray luminosity of 1040–1041 erg s−1 at the nucleus. Their hard X-ray continuum is well represented by power-law of photon index ~ 1.8. The X-ray to Hα luminosity ratio LX/LHα is quite similar to Seyfert galaxies and strongly support the presence of low luminosity AGNs.


1989 ◽  
Vol 134 ◽  
pp. 167-172
Author(s):  
Katsuji Koyama

X-ray emission in the 2–10 keV energy range was observed with the Ginga satellite from the Seyfert 2 galaxy NGC1068. The continuum spectrum can be described by a power-law of photon index about 1.5. An intense iron line at 6.5 keV with an equivalent width of 1.3 keV was clearly noticed. The X-ray flux was about 6 × 10 −12 erg/sec/cm2 or 3 × 1041 erg/sec, assuming a distance of 22 Mpc. The observed spectrum is consistent with the scattering and reprocessing of X-rays by the gas surrounding the central engine. With this picture we estimate that the X-ray flux of the central engine is about 1043 - 1044 erg/sec, a typical value for a Seyfert 1 galaxy.


Author(s):  
D A Zyuzin ◽  
A V Karpova ◽  
Y A Shibanov ◽  
A Y Potekhin ◽  
V F Suleimanov

Abstract We analyze new XMM-Newton and archival Chandra observations of the middle-aged γ-ray radio-quiet pulsar J1957+5033. We detect, for the first time, X-ray pulsations with the pulsar spin period of the point-like source coinciding by position with the pulsar. This confirms the pulsar nature of the source. In the 0.15–0.5 keV band, there is a single pulse per period and the pulsed fraction is ≈18 ± 6 per cent. In this band, the pulsar spectrum is dominated by a thermal emission component that likely comes from the entire surface of the neutron star, while at higher energies (≳ 0.7 keV) it is described by a power law with the photon index Γ ≈ 1.6. We construct new hydrogen atmosphere models for neutron stars with dipole magnetic fields and non-uniform surface temperature distributions with relatively low effective temperatures. We use them in the spectral analysis and derive the pulsar average effective temperature of ≈(2 − 3) × 105 K. This makes J1957+5033 the coldest among all known thermally emitting neutron stars with ages below 1 Myr. Using the interstellar extinction–distance relation, we constrain the distance to the pulsar in the range of 0.1–1 kpc. We compare the obtained X-ray thermal luminosity with those for other neutron stars and various neutron star cooling models and set some constraints on latter. We observe a faint trail-like feature, elongated ∼8 arcmin from J1957+5033. Its spectrum can be described by a power law with a photon index Γ = 1.9 ± 0.5 suggesting that it is likely a pulsar wind nebula powered by J1957+5033.


Sign in / Sign up

Export Citation Format

Share Document