scholarly journals Systemic or topical application of plasminogen activator inhibitor with extended half-life (VLHL PAI-1) reduces bleeding time and total blood loss

Author(s):  
Jankun
2008 ◽  
Vol 108 (4) ◽  
pp. 596-602 ◽  
Author(s):  
Jose L. Iribarren ◽  
Juan J. Jimenez ◽  
Domingo Hernández ◽  
Maitane Brouard ◽  
Debora Riverol ◽  
...  

Background Plasminogen activator inhibitor 1 (PAI-1) attenuates the conversion of plasminogen to plasmin. Polymorphisms of the PAI-1 gene are associated with varying PAI-1 levels and risk of prothrombotic events in nonsurgical patients. The purpose of this study, a secondary analysis of a clinical trial, was to investigate whether PAI-1 genotype affects the efficacy of tranexamic acid (TA) in reducing postoperative chest tube blood loss of patients undergoing cardiopulmonary bypass. Methods Fifty patients were classified according to PAI-1 genotype (4G/4G, 4G/5G, or 5G/5G). Twenty-four received 2 g TA before and after cardiopulmonary bypass, whereas 26 received placebo. The authors recorded data related to coagulation, fibrinolysis, and bleeding before surgery, at admission to the intensive care unit (0 h), and 4 and 24 h later. Results In patients not receiving TA, those with the 5G/5G genotype had significantly higher chest tube blood loss and transfusion requirements compared with patients with the other genotypes at all time points. Patients with the 5G/5G genotype receiving TA showed significantly lower blood loss compared with the placebo group. There were no significant differences in blood loss or transfusion requirements between patients with the 4G/4G genotype when TA was used. Conclusions Plasminogen activator inhibitor-1 5G/5G homozygotes who did not receive TA showed significantly greater postoperative bleeding than patients with other PAI-1 genotypes. 5G/5G homozygotes who received TA showed the greatest blood-sparing benefit.


1998 ◽  
Vol 80 (08) ◽  
pp. 286-291 ◽  
Author(s):  
Ann Gils ◽  
Paul Declerck

SummaryPlasminogen activator inhibitor-1 (PAI-1) is a unique member of the serpin superfamily because of its conformational and functional flexibility. In the present study, we have evaluated the influence of the nonionic detergent Triton X-100 (TX-100) on the functional stability and conformational transitions of PAI-1.At 37° C, TX-100 induced a concentration-dependent decrease of the functional half-life of PAI-1 resulting in half-lives of 177 ± 54 min (mean ± SD, n = 3), 19 ± 2 min, 1.7 ± 0.3 min and 0.53 ± 0.03 min in the presence of 0.005, 0.010, 0.020 and 0.2% TX-100, respectively, compared to a half-life of 270 ± 146 min in the absence of TX-100. Conformational analysis at various time points and at different temperatures (0° C, 25° C, 37° C) revealed that this inactivation proceeds through the formation of a substrate-like intermediate followed by the formation of the latent form. Kinetic evaluation demonstrated that this conversion fits to two consecutive first-order transitions, i.e. active substrate latent. The k1 value was strongly dependent on the concentration of TX-100 (e.g. 0.002 ± 0.0006 s -1 and 0.029 ± 0.003 s -1 for 0.01% and 0.2% TX-100 at 37° C) whereas the conversion of substrate to latent (k2) was virtually independent of the TX-100 concentration (i.e. 0.012 ± 0.002 s -1 and 0.011 ± 0.001 s -1 for 0.01 and 0.2% TX-100 at 37° C).Experiments with a variety of other non-ionic amphiphilic compounds revealed that the amphiphilic character of the compound is, at least in part, responsible for the observed effects and strongly indicate that the currently reported mechanism of inactivation is of general importance for the conformational transitions in PAI-1.In conclusion, TX-100 changes the initial conformation of PAI-1 resulting in altered functional properties. This observation allows us to develop a new model for the mechanism involved in the conformational flexibility of PAI-1 and may provide new insights for the development of strategies for interference with PAI-1 activity.


2000 ◽  
Vol 84 (11) ◽  
pp. 871-875 ◽  
Author(s):  
Nele Vleugels ◽  
John Leys ◽  
Isabelle Knockaert ◽  
Paul Declerck

SummaryPlasminogen activator inhibitor-1 (PAI-1) is a unique member of the serpin family, as it spontaneously converts into a latent conformation. However, the exact mechanism of this conversion is not known. Previous studies reported that neutralizing monoclonal antibodies as well as reversal or removal of charges on the s3C-s4C turn results in a destabilization of PAI-1 leading to an accelerated conversion to its latent form.In this study the effect of the reversal or removal of charges in this “gate region” (R186E/R187E, H190E/K191E, H190L/K191L and R356E) on a stable PAI-1-variant (PAI-1-stab) was investigated. Whereas PAI-1-stab has a half-life of 150 ± 66 h, PAI-1-stab-R186ER187E, PAI-1-stab-H190E-K191E, PAI-1-stab-H190L-K191L and PAI-1-stab-R356E have a strongly decreased half-life (p< 0.005 versus PAI-1-stab) of 175 ± 48 min, 75 ± 34 min, 68 ± 38 min and 79 ± 16 min, respectively. Wild-type PAI-1 (wtPAI-1) had a half-life of 55 ± 19 min. These data indicate that the stabilization induced by the mutated residues in PAI-1-stab is counteracted by the additional mutations, resulting in half-lives similar to that of wtPAI-1, thereby suggesting that the stabilizing and destabilizing forces act mainly independently in these mutants. Extrapolation of these data to other (stable) serpins leads to the hypothesis that the s3C-s4C turn and the distal hinge region of the reactive site loop plays a role for the stability of serpins in general.


2010 ◽  
Vol 30 (5) ◽  
pp. 904-912 ◽  
Author(s):  
Yuko Izuhara ◽  
Nagahisa Yamaoka ◽  
Hidehiko Kodama ◽  
Takashi Dan ◽  
Shunya Takizawa ◽  
...  

Inhibition of plasminogen activator inhibitor (PAI)-1 is useful to treat several disorders including thrombosis. An inhibitor of PAI-1 (TM5275) was newly identified by an extensive study of structure-activity relationship based on a lead compound (TM5007) which was obtained through virtual screening by docking simulations. Its antithrombotic efficacy and adverse effects were tested in vivo in rats and nonhuman primates (cynomolgus monkey). TM5275, administered orally in rats (1 to 10 mg/kg), has an antithrombotic effect equivalent to that of ticlopidine (500 mg/kg) in an arterialvenous shunt thrombosis model and to that of clopidogrel (3 mg/kg) in a ferric chloride-treated carotid artery thrombosis model. TM5275 does not modify activated partial thromboplastin time and prothrombin time or platelet activity and does not prolong bleeding time. Combined with tissue plasminogen activator, TM5275 improves the latter's therapeutic efficacy and reduces its adverse effect. Administered to a monkey model of photochemical induced arterial thrombosis, TM5275 (10 mg/kg) has the same antithrombotic effect as clopidogrel (10 mg/kg), without enhanced bleeding. This study documents the antithrombotic benefits of a novel, more powerful, PAI-1 inhibitor in rats and, for the first time, in nonhuman primates. These effects are obtained without adverse effect on bleeding time.


2009 ◽  
Vol 61 (4) ◽  
pp. 673-680 ◽  
Author(s):  
Jerzy Jankun ◽  
Ansari M. Aleem ◽  
Radosław Struniawski ◽  
Wiesława Łysiak-Szydłowska ◽  
Steven H. Selman ◽  
...  

2005 ◽  
Vol 173 (4S) ◽  
pp. 255-255 ◽  
Author(s):  
Hugo H. Davila ◽  
Thomas R. Magee ◽  
Freddy Zuniga ◽  
Jacob Rajfer ◽  
Nestor F. GonzalezCadavid

1999 ◽  
Vol 82 (07) ◽  
pp. 104-108 ◽  
Author(s):  
Franck Paganelli ◽  
Marie Christine Alessi ◽  
Pierre Morange ◽  
Jean Michel Maixent ◽  
Samuel Lévy ◽  
...  

Summary Background: Type 1 plasminogen activator inhibitor (PAI-1) is considered to be risk factor for acute myocardial infarction (AMI). A rebound of circulating PAI-1 has been reported after rt-PA administration. We investigated the relationships between PAI-1 levels before and after thrombolytic therapy with streptokinase (SK) as compared to rt-PA and the patency of infarct-related arteries. Methods and Results: Fifty five consecutive patients with acute MI were randomized to strep-tokinase or rt-PA. The plasma PAI-1 levels were studied before and serially within 24 h after thrombolytic administration. Vessel patency was assessed by an angiogram at 5 ± 1days. The PAI-1 levels increased significantly with both rt-PA and SK as shown by the levels obtained from a control group of 10 patients treated with coronary angioplasty alone. However, the area under the PAI-1 curve was significantly higher with SK than with rt-PA (p <0.01) and the plasma PAI-1 levels peaked later with SK than with rt-PA (18 h versus 3 h respectively). Conversely to PAI-1 levels on admission, the PAI-1 levels after thrombolysis were related to vessel patency. Plasma PAI-1 levels 6 and 18 h after SK therapy and the area under the PAI-1 curve were significantly higher in patients with occluded arteries (p <0.002, p <0.04 and p <0.05 respectively).The same tendency was observed in the t-PA group without reaching significance. Conclusions: This study showed that the PAI-1 level increase is more pronounced after SK treatment than after t-PA treatment. There is a relationship between increased PAI-1 levels after thrombolytic therapy and poor patency. Therapeutic approaches aimed at quenching PAI-1 activity after thrombolysis might be of interest to improve the efficacy of thrombolytic therapy for acute myocardial infarction.


1988 ◽  
Vol 59 (02) ◽  
pp. 299-303 ◽  
Author(s):  
Grazia Nicoloso ◽  
Jacques Hauert ◽  
Egbert K O Kruithof ◽  
Guy Van Melle ◽  
Fedor Bachmann

SummaryWe analyzed fibrinolytic parameters in 20 healthy men and 20 healthy women, aged from 25 to 59, before and after 10 and 20 min venous occlusion. The 10 min post-occlusion fibrinolytic activity measured directly in diluted unfractionated plasma by a highly sensitive 125I-fibrin plate assay correlated well with the activity of euglobulins determined by the classical fibrin plate assay (r = 0.729), but pre-stasis activities determined with these two methods did not correlate (r = 0.084). The enhancement of fibrinolytic activity after venous occlusion was mainly due to an increase of t-PA in the occluded vessels (4-fold increase t-PA antigen after 10 min and 8-fold after 20 min venous occlusion). Plasminogen activator inhibitor (PAI) activity and plasminogen activator inhibitor 1 (PAI-1)1 antigen levels at rest showed considerable dispersion ranging from 1.9 to 12.4 U/ml, respectively 6.9 to 77 ng/ml. A significant increase of PAI-1 antigen levels was observed after 10 and 20 min venous occlusion. At rest no correlation was found between PAI activity or PAI-1 antigen levels and the fibrinolytic activity measured by 125I-FPA. However, a high level of PAI-1 at rest was associated with a high prestasis antigen level of t-PA and a low fibrinolytic response after 10 min of venous stasis. Since the fibrinolytic response inversely correlated with PAI activity at rest, we conclude that its degree depends mainly on the presence of free PAI.


1988 ◽  
Vol 60 (02) ◽  
pp. 328-333 ◽  
Author(s):  
N J de Fouw ◽  
Y F de Jong ◽  
F Haverkate ◽  
R M Bertina

summaryThe effect of purified human activated protein G (APC) on fibrinolysis was studied using a clot iysis system consisting of purified glu-plasminogen, tissue-type plasminogen activator, plasminogen activator inhibitor (released from endothelial cells or blood platelets), fibrinogen, 125T-fibrinogen and thrombin. All proteins were of human origin.In this system APC could increase fibrinolysis in a dose dependent way, without affecting fibrin formation or fibrin crosslinking. However, this profibrinolytic effect of APC could only be observed when plasminogen activator inhibitor (PAI-l) was present. The effect of APC was completely quenched by pretreatment of APC with anti-protein C IgG or di-isopropylfluorophosphate. Addition of the cofactors of APC:protein S, Ca2+-ions and phospholipid-alone or in combination did not enhance the profibrinolytic effect of APC. These observations indicate that human APC can accelerate in vitro clot lysis by the inactivation of PAI-1 activity. However, the neutralization of PAI-1 by APC is independent of the presence or absence of protein S, phospholipid and Ca2+-ions.


Sign in / Sign up

Export Citation Format

Share Document