scholarly journals 17β-estradiol-containing liposomes as a novel delivery system for the antisense therapy of ER-positive breast cancer: An in vitro study on the MCF-7 cell line

2014 ◽  
Vol 33 (2) ◽  
pp. 921-929 ◽  
Author(s):  
ZBYNEK HEGER ◽  
JAROMIR GUMULEC ◽  
NATALIA CERNEI ◽  
KATERINA TMEJOVA ◽  
PAVEL KOPEL ◽  
...  
2020 ◽  
Vol 11 (SPL4) ◽  
pp. 805-808
Author(s):  
Ravikumar Raju ◽  
Teja ◽  
Sravanathi P ◽  
Muthu Babu K

Breast cancer is the subsequent foremost reason of cancer death in a woman and ranks as the primary foremost reason of death in India. In its conduct, several measures and recommendation are considered. Homoeopathic medicines are one of the part of a corresponding, and another medicine is utilized for the treatment of cancer. The main purpose of the investigation is to evaluate the anticancer action of homoeopathic arrangements of Asterias rubens  on the basis of the similia principle. We directed an in vitro study using MTT assay to control the result of ultra diluted homoeopathic preparation in contradiction of two human breast glandular cancer cell lines(MCF-7 and MDA-MD- 231), frequently used for the breast cancer treatment, by testing the feasibility of breast cancer (MCF-7 and MDA-MD-231) cell line, with various attenuations of Asterias rubens  at 24 hrs. Multiple comparisons between tested reagents at different concentrations confirmed the significance of the said results. At a dilution of 1:25 6CH and 30CH potency shown superior activity on MCF-7 and no such significant changes on MDA-MD-231 at any dilutions As it fails to offer estrogen receptor(ER) Also progesterone receptor (PR) expression, and also HER2 (human epidermal development variable receptor2) so continuously a triple-negative breast cancer it will be a hostility manifestation for breast cancer with restricted medicine choices. However, further potency needs to be tested. These preliminary significant results warrant further in vitro and in vivo studies to estimate the possible of Asterias rubens  a medicine to treat breast cancer.


2019 ◽  
Vol 111 ◽  
pp. 813-820 ◽  
Author(s):  
Qiu Xiang ◽  
Juan Tang ◽  
Qin Luo ◽  
Jinfeng Xue ◽  
Yexing Tao ◽  
...  

2012 ◽  
Vol 65 (12) ◽  
pp. 1625 ◽  
Author(s):  
Vasilis I. Balas ◽  
Christina N. Banti ◽  
Nikolaos Kourkoumelis ◽  
Sotiris K. Hadjikakou ◽  
George D. Geromichalos ◽  
...  

Crystals of Ph3SnCl (1) were grown from a methanol/acetonitrile solution. Compounds [Ph3SnOH]n (2) and [(Ph2Sn)4Cl2O2(OH)2] (3) were crystallized from diethyl ether/methanol/acetonitrile and hot acetone/water solutions respectively, of the white precipitation, formed by adding KOH to solutions of 1 and [Ph2SnCl2] in 1 : 1 and 1 : 2 molar ratios respectively. Complex 1 was characterized by X-ray crystallography. X-ray structure determination of compounds 2 and 3 confirmed the previously reported identities. The molecular structure of 1, reported here, is a new polymorphic form of the known one for Ph3SnCl. Four independent [Ph3SnCl] molecules constitute the crystal structure of 1. The moieties are packed in two pairs in a tail-to-tail arrangement. Complexes 1–3 were evaluated for their in vitro cytotoxic activity (cell viability) against human cancer cell lines: HeLa (human cervical), MCF-7 (breast, estrogen receptor (ER) positive), MDA-MB-231 (breast, ER negative), A549 (lung), Caki-1 (kidney carcinoma), 786-O (renal adenocarcinoma), K1 (thyroid carcinoma), and the normal human lung cell line MRC-5 (normal human fetal lung fibroblast cells) versus, the normal immortalized human mammary gland epithelial cell line MTSV17 with a sulforhodamine B (SRB) assay. The results show potent cytotoxic activity of the complexes against all cell lines used, which was superior to that of cisplatin (CDDP). Compounds 1–3 showed higher activity against breast cancer cells MCF-7 (ER positive) than against of MDA-MB-231 (ER negative). These findings prompted us to search for possible interaction of these complexes with other cellular elements of fundamental importance in cell proliferation. The influence of these complexes 1–3 upon the catalytic peroxidation of linoleic acid to hydroperoxylinoleic acid by the enzyme lipoxygenase (LOX), as well as their binding affinity towards calf thymus-DNA, were kinetically and theoretically studied.


2006 ◽  
Vol 24 (18_suppl) ◽  
pp. 10676-10676
Author(s):  
W. Han ◽  
Y. Zhao ◽  
Z. Wu ◽  
Y. Mu ◽  
L. Yu ◽  
...  

10676 Background: Aberrant ERα activity is linked to genesis and malignant progression of breast cancer through direct target gene activation or repression. A complex network of coregulatory proteins is largely believed to determine the transcriptional activity of ERα. LRP16 was identified previously to be an estrogen (E2) responsive gene, but its function involving in conferring estrogen signalling pathway is not clear. Methods: Endogenous LRP16 expression in MCF-7 cells was stably suppressed by retrovirus-mediated small interference RNA (siRNA). The effects of LRP16 expression on E2-stimulated growth and invasive ability of MCF-7 cells were determined in vitro and in vivo assays. The effects of LRP16 expression on ERα transactivation were determined by luciferase assays. The interaction of LRP16 and ERα was examined by GST pull-down and coimmunopricipitation (CoIP) assays. Northern blot and Western blot were used to detect the mRNA and protein levels of ER target genes in LRP16-inhibited MCF-7 cells. The LRP16 expression levels in primary breast cancer were detected by Northern blot. Results: Fristly, LRP16 expression was characterized to be dependent on estrogen activities. Then, LRP16 was identified to be an estrogen-independent ERα cofactor in ER-positive breast cancer cells and demonstrate that LRP16 is an essential coactivator to ERα-mediated transactivation in an estrogen-dependent manner. Suppression of LRP16 expression in ER-positive breast cancer cells specifically inhibits the transcription of ER upregulated genes, results in the increase of E-cadherin expression through ER mediation. In vitro and in vivo data demonstrate that suppression of LRP16 inhibits the ability of estrogen-stimulated proliferation and invasiveness of ER-positive breast cancer cells. The pathological and clinical characteristics of human breast cancer includining ER/PR-positiveness, tumor diameter and the involvement of axillary lymphoid nodes were tightly linked with the LRP16 gene expression level. Conclusions: These results establish a mechanistic link between estrogen receptor status, its coactivator LRP16, and progression of ER-positive breast cancers, and may provide a novel antiestrogenic target for the therapy of ER positive breast cancer. No significant financial relationships to disclose.


2014 ◽  
Vol 68 (5) ◽  
pp. 565-571 ◽  
Author(s):  
Soha Namazi ◽  
Javad Rostami-Yalmeh ◽  
Ebrahim Sahebi ◽  
Mansooreh Jaberipour ◽  
Mahboobeh Razmkhah ◽  
...  

2018 ◽  
Vol 2 (1) ◽  
pp. 13-17 ◽  
Author(s):  
Muhammad Solehuddin Bumidin ◽  
Farah Azurin Johari ◽  
Nurul Fikri Risan ◽  
Mohd Hamzah Mohd Nasir

2020 ◽  
Author(s):  
Neil Portman ◽  
Heloisa H. Milioli ◽  
Sarah Alexandrou ◽  
Rhiannon Coulson ◽  
Aliza Yong ◽  
...  

AbstractBackgroundResistance to endocrine therapy is a major clinical challenge in the management of estrogen receptor (ER)-positive breast cancer. In this setting p53 is frequently wildtype and its activity may be suppressed via upregulation of its key regulator MDM2. This underlies our rationale to evaluate MDM2 inhibition as a therapeutic strategy in treatment resistant ER-positive breast cancer.MethodsWe used the MDM2 inhibitor NVP-CGM097 to treat in vitro and in vivo models alone and in combination with fulvestrant or palbociclib. We perform cell viability, cell cycle, apoptosis and senescence assays to evaluate antitumor effects in p53 wildtype and p53 mutant ER positive cell lines (MCF-7, ZR75-1, T-47D) and MCF-7 lines resistant to endocrine therapy and to CDK4/6 inhibition. We further assess the drug effects in patient-derived xenograft (PDX) models of endocrine-sensitive and -resistant ER positive breast cancer.ResultsWe demonstrate that MDM2 inhibition results in cell cycle arrest and increased apoptosis in p53-wildtype in vitro and in vivo breast cancer models, leading to potent anti-tumour activity. We find that endocrine therapy or CDK4/6 inhibition synergises with MDM2 inhibition but does not further enhance apoptosis. Instead, combination treatments result in profound regulation of cell cycle-related transcriptional programmes, with synergy achieved through increased antagonism of cell cycle progression. Combination therapy pushes cell lines resistant to fulvestrant or palbociclib to become senescent and significantly reduces tumour growth in a fulvestrant resistant patient derived xenograft model.ConclusionsWe conclude that MDM2 inhibitors in combination with ER degraders or CDK4/6 inhibitors represent a rational strategy for treating advanced, endocrine resistant ER-positive breast cancer, operating through synergistic activation of cell cycle co-regulatory programs.


2018 ◽  
Vol 18 (17) ◽  
pp. 1483-1493
Author(s):  
Ricardo Imbroisi Filho ◽  
Daniel T.G. Gonzaga ◽  
Thainá M. Demaria ◽  
João G.B. Leandro ◽  
Dora C.S. Costa ◽  
...  

Background: Cancer is a major cause of death worldwide, despite many different drugs available to treat the disease. This high mortality rate is largely due to the complexity of the disease, which results from several genetic and epigenetic changes. Therefore, researchers are constantly searching for novel drugs that can target different and multiple aspects of cancer. Experimental: After a screening, we selected one novel molecule, out of ninety-four triazole derivatives, that strongly affects the viability and proliferation of the human breast cancer cell line MCF-7, with minimal effects on non-cancer cells. The drug, named DAN94, induced a dose-dependent decrease in MCF-7 cells viability, with an IC50 of 3.2 ± 0.2 µM. Additionally, DAN94 interfered with mitochondria metabolism promoting reactive oxygen species production, triggering apoptosis and arresting the cancer cells on G1/G0 phase of cell cycle, inhibiting cell proliferation. These effects are not observed when the drug was tested in the non-cancer cell line MCF10A. Using a mouse model with xenograft tumor implants, the drug preventing tumor growth presented no toxicity for the animal and without altering biochemical markers of hepatic function. Results and Conclusion: The novel drug DAN94 is selective for cancer cells, targeting the mitochondrial metabolism, which culminates in the cancer cell death. In the end, DAN94 has been shown to be a promising drug for controlling breast cancer with minimal undesirable effects.


2021 ◽  
pp. 096032712199945
Author(s):  
AT Aliyev ◽  
S Ozcan-Sezer ◽  
A Akdemir ◽  
H Gurer-Orhan

Apigenin, a flavonoid, is reported to act as an estrogen receptor (ER) agonist and inhibit aromatase enzyme. However, amentoflavone, a biflavonoid bearing two apigenin molecules, has not been evaluated for its endocrine modulatory effects. Besides, it is highly consumed by young people to build muscles, enhance mood and lose weight. In the present study, apigenin was used as a reference molecule and ER mediated as well as ER-independent estrogenic/antiestrogenic activity of amentoflavone was investigated. Antitumor activity of amentoflavone was also investigated in both ER positive (MCF-7 BUS) and triple-negative (MDA-MB-231) breast cancer cells and its cytotoxicity was evaluated in human breast epithelial cells (MCF-10A). Our data confirmed ER agonist, aromatase inhibitory and cytotoxic effects of apigenin in breast cancer cells, where no ER mediated estrogenic effect and physiologically irrelevant, slight, aromatase inhibition was found for amentoflavone. Although selective cytotoxicity of amentoflavone was found in MCF-7 BUS cells, it does not seem to be an alternative to the present cytotoxic drugs. Therefore, neither an adverse effect, mediated by an estrogenic/antiestrogenic effect of amentoflavone nor a therapeutical benefit would be expected from amentoflavone. Further studies could be performed to investigate its in vivo effects.


Sign in / Sign up

Export Citation Format

Share Document