scholarly journals Mathematical modeling of drying the pulped coffee (Coffea arabica l.) at different air conditions

Author(s):  
Paulo Carteri Coradi ◽  
Flávio Meira Borém ◽  
Carlos Henrique Reinato

The aim of the study was to describe the drying kinetics of washed coffee (Coffea arabicaL.) and evaluate the best mathematical model to fit the experimental drying data conducted with different air humidity (40 %, 50 %, and 60 %) and temperatures (23 °C, 40 °C, and 60 °C). The fruit shakes were standardized washing, separation, and manual selection of green coffees, pass cane, and green buoy. Then, approx. 150 L of coffee cherries were pulped and taken directly to the yard. Drying the washed coffee was completed in a mechanical dryer and yard. The obtained results showed that the different conditions of the ambient air significantly influenced the processes of drying pulped coffee. The water content of the hygroscopic equilibrium of pulped coffee is directly proportional to the water activity and relative humidity, decreasing with increasing temperature, for the same value of equilibrium relative humidity. The Oswin model was best represented by the hygroscopicity of the pulped coffee, while the Midilli model shows the best fit to describe the drying curves of the washed coffee. The effective diffusion coefficient increases with increasing temperature of the drying air and reducing of relative humidity, being described by the Arrhenius equation. The aim of the study was to describe the drying kinetics of washed coffee (Coffea arabica L.) and evaluate the best mathematical model to fit the experimental drying data conducted with different air humidity (40 %, 50 %, and 60 %) and temperatures (23 °C, 40 °C, and 60 °C). The fruit shakes were standardized washing, separation, and manual selection of green coffees, pass cane, and green buoy. Then, approx. 150 L of coffee cherries were pulped and taken directly to the yard. Drying the washed coffee was completed in a mechanical dryer and yard. The obtained results showed that the different conditions of the ambient air significantly influenced the processes of drying pulped coffee. The water content of the hygroscopic equilibrium of pulped coffee is directly proportional to the water activity and relative humidity, decreasing with increasing temperature, for the same value of equilibrium relative humidity. The Oswin model was best represented by the hygroscopicity of the pulped coffee, while the Midilli model shows the best fit to describe the drying curves of the washed coffee. The effective diffusion coefficient increases with increasing temperature of the drying air and reducing of relative humidity, being described by the Arrhenius equation

Author(s):  
Elisabete P. de Sousa ◽  
Rossana M. F. de Figueirêdo ◽  
Josivanda P. Gomes ◽  
Alexandre J. de M. Queiroz ◽  
Deise S. de Castro ◽  
...  

ABSTRACT The aim of this work was to study the drying kinetics of pequi pulp by convective drying at different conditions of temperature (50, 60, 70 and 80 °C) and thickness (0.5, 1.0 and 1.5 cm) at the air speed of 1.0 m s-1, with no addition of adjuvant. The experimental data of pequi pulp drying kinetics were used to plot drying curves and fitted to the models: Midilli, Page, Henderson & Pabis and Newton. Effective diffusivity was calculated using the Fick’s diffusion model for a flat plate. It was found that, with increasing thickness, the drying time increased and, with increasing temperature, the drying time was reduced. The Midilli model showed the best fit to the experimental data of pequi pulp drying at all temperatures and thicknesses, presenting higher coefficients of determination (R2), indicating that this model satisfactorily represents the pequi pulp drying phenomenon. There was a trend of increase in the effective diffusivity with the increase in pulp layer thickness and temperature.


2012 ◽  
Vol 16 (12) ◽  
pp. 1346-1352 ◽  
Author(s):  
Renata C. dos Reis ◽  
Ivano A. Devilla ◽  
Diego P. R. Ascheri ◽  
Ana C. O. Servulo ◽  
Athina B. M. Souza

The objective of this paper was to model the drying curves of the leaves of basil (Ocimum basilicum L.) in the infrared at temperatures of 50, 60, 70 and 80 ºC and to evaluate the influence of drying temperature on the color of dried leaves. Drying was conducted in infrared dryer with temperature and greenhouse air circulation. Experimental data were fitted to eight mathematical models. The magnitude of the coefficient of determination (R²), the mean relative error (P), the estimated mean error (SE) and chisquare test (χ2) were used to verify the degree of fitness of the models. From the study it was concluded that: a) the behavior of the drying curves of basil leaves was similar to most agricultural products, the drying times in the infrared were less than the drying times in an oven with air circulation, b) the mathematical drying model proposed by Midilli et al. (2002) was the one which best adjusted to the experimental data, c) the diffusion coefficient ranged from 9.10 x 10-12 to 2.92 x 10-11 m² s-1 and d) the color of the samples was highly influenced by drying, becoming darker due to loss of chlorophyll with increasing temperature.


2009 ◽  
Vol 27 (12) ◽  
pp. 4359-4368 ◽  
Author(s):  
A. O. Williams ◽  
J. A. Davies ◽  
S. E. Milan ◽  
A. P. Rouillard ◽  
C. J. Davis ◽  
...  

Abstract. Recently, a technique has been developed whereby the radial velocity, Vr, and longitude direction, β, of propagation of an outward-moving solar transient, such as a Coronal Mass Ejection (CME), can be estimated from its track in a time-elongation map produced using Heliospheric Imager (HI) observations from a single STEREO spacecraft. The method employed, which takes advantage of an artefact of projective geometry, is based on the evaluation of the best fit of the time-elongation profile of the transient, extracted from a time-elongation map, to a set of theoretical functions corresponding to known combinations of radial velocity and direction; here we present an initial theoretical assessment of the efficacy of this technique. As the method relies on the manual selection of points along the time-elongation profile, an assessment of the accuracy with which this is feasible, is initially made. The work then presented assesses theoretically this method of recovering the velocity and propagation direction of solar transients from their time-elongation profiles using a Monte-Carlo simulation approach. In particular, we assess the range of elongations over which it is necessary to make observations in order to accurately recover these parameters. Results of the Monte-Carlo simulations suggest that it is sufficient to track a solar transient out to around 40° elongation to provide accurate estimates of its associated radial velocity and direction; the accuracy to which these parameters can be estimated for a transient tracked over a particular elongation extent is, however, sensitive to its velocity and direction relative to the Sun-Spacecraft line. These initial results suggest that this technique based on single spacecraft STEREO/HI observations could prove extremely useful in terms of providing an early warning of a CME impact on the near-Earth environment.


2014 ◽  
Vol 3 (2) ◽  
Author(s):  
Inês Nunes Ramos ◽  
Teresa R.S. Brandão ◽  
Cristina L.M. Silva

Two different pre-treatments were applied to grapes prior to drying in a mixed mode solar dryer. Grapes were blanched in water and in a 0.1% sunflower oil water emulsion, both at 99oC and for approximately 15 seconds. Several models were tested to fit the experimental data of drying curves but the normalized Newton model gave the best fit results. Samples blanched in hot water or in the 0.1% edible oil emulsion had faster drying rates than untreated samples. Contrary to what was expected, pre-treating with the 0.1% edible oil emulsion did not increase the drying rate to a higher extent than blanching. Pre-treatments did not give a noteworthy difference in the total drying time. However, they had an important role in accelerating initial drying rates, thus preventing moulds and bacterial growth and consequently increasing farmers’ income.


Author(s):  
Plúvia O. Galdino ◽  
Rossana M. F. de Figueirêdo ◽  
Alexandre J. de M. Queiroz ◽  
Pablícia O. Galdino

ABSTRACT This study was conducted in order to obtain drying curves of whole atemoya pulp through the foam-mat drying method. The suspension was prepared with whole atemoya pulp mixed with 2% of Emustab® and 2% of Super Liga Neutra® with mixing time of 20 min, and dried in a forced-air oven at different temperatures (60; 70 and 80 °C) and thicknesses of the foam layer (0.5, 1.0 and 1.5 cm). The drying rate curves were plotted against the water content ratio and the semi-theoretical models of Henderson & Pabis, Page and Midilli were used. All tested models showed coefficient of determination (R2) above 0.993, and the Midilli model showed the best fit for all conditions. Drying curves were affected by temperature and layer thickness.


Author(s):  
Thaís A. de S. Smaniotto ◽  
Osvaldo Resende ◽  
Kelly A. de Sousa ◽  
Daniel E. C. de Oliveira ◽  
Rafael C. Campos

ABSTRACT The objectives of this study were to fit different mathematical models to experimental data of drying of sunflower grains, determine and evaluate the effective diffusion coefficient and obtain the activation energy for the process during the drying under various conditions of air. The sunflower grains were collected with an initial moisture content of 0.5267 dry basis (d.b.) and dried in an oven with forced air ventilation under five temperature conditions: 35, 50, 65, 80 and 95 °C, until reaching the moisture content of 0.0934 ± 0.0061 (d.b.). Among the analyzed models, Wang and Singh showed the best fit to describe the drying phenomenon. The effective diffusion coefficient of sunflower grains increased with the increment in air temperature and has activation energy for liquid diffusion in the sunflower drying of 29.55 kJ mol-1.


2019 ◽  
Vol 62 (5) ◽  
pp. 1075-1086
Author(s):  
David R. Bohnhoff ◽  
Rhonda K. Bohnhoff

Abstract. Hybrid hazelnuts that are predominately a cross between the American hazelnut () and the European hazelnut () are being grown and evaluated as part of an effort to develop a thriving hazelnut industry for the Upper Midwest of the U.S. Along with this plant development effort, researchers are investigating and assessing various harvesting and processing methods and equipment in an effort to create a robust and food-safe production industry. One harvesting alternative is to pick hazelnut clusters off plants before the nuts fully ripen and fall to the ground, an approach that requires greater attention to drying. Whether entire clusters are dried or the nuts are separated from the husks prior to drying is a decision that will be influenced by the drying requirements and potential uses for these hazelnut fractions. To this end, a study was undertaken to establish desorption isotherms for the husks, shells, and kernels of hybrid hazelnuts grown in the Upper Midwest. Clusters were hand-picked from shrubs in Wisconsin and immediately placed in 18 different controlled environments (six different relative humidity levels at three different temperatures). Actual moisture conditioning took place over saturated salt solutions in specially fabricated biomaterial moisture conditioning units. After a six-week period during which the clusters reached equilibrium with their environment via desorption, they were separated into husk, shell, and kernel fractions and returned to their respective conditioning units. After another six weeks in the conditioning units, the moisture content (MC) of each fraction was determined by oven-drying at 103°C for 48 h. Under equilibrium conditions, the kernel MC was found to be only 37% of that for shells, whereas the equilibrium moisture content (EMC) values for husks were on average 14% greater than those for shells. On a dry basis, the average cluster mass was 32.9% husk, 43.9% shell, and 23.2% kernel. Likewise, on a dry basis, the average whole nut mass was 65.5% shell and 34.5% kernel. The desorption data were fit to the Modified Henderson, Modified Chung-Pfost, Modified Halsey, Modified Oswin, and Modified GAB equations. Overall, the best fit to the experimental data was provided by the Modified Chung-Pfost equation with parameters determined using equilibrium relative humidity (ERH) as the dependent variable in regression analyses. For ERH values above 0.70, the temperature-modified form of the GAB equation is recommended for predicting desorption EMC values for hazelnut fractions. Keywords: Desorption, Equilibrium moisture content, Equilibrium relative humidity, Hazelnuts, Kernels, Nuts, Shells, Water activity.


1987 ◽  
Vol 52 (3) ◽  
pp. 663-671 ◽  
Author(s):  
Jiří Hanika ◽  
Vladimír Janoušek ◽  
Karel Sporka

Adsorption data for the impregnation of alumina with an aqueous solution of cobalt dichloride and ammonium molybdate were treated in terms of the Langmuir adsorption isotherm and compared with a mathematical model set up to describe the kinetics of simultaneous impregnation of a support by two components. The effective diffusion coefficients of the two components at 25 °C in a cylindrical particle of alumina were obtained. The validity of the model used was verified qualitatively by comparing the numerical results with the experimental time dependent concentration profiles of the active components in a catalyst particle, measured by electron microanalysis technique.


Sign in / Sign up

Export Citation Format

Share Document