scholarly journals In vitro antibacterial effect of silver nanoparticles synthetized using Agastache foeniculum plant and callus extracts

2021 ◽  
Vol 6 (2) ◽  
pp. 631-643
Author(s):  
Oksana B. Polivanova ◽  
◽  
Mikhail Yu. Cherednichenko ◽  
Elena A. Kalashnikova ◽  
Rima N. Kirakosyan
2012 ◽  
Vol 5 (1) ◽  
pp. 7-12 ◽  
Author(s):  
Kwon-Yong Choi ◽  
Jong-Chan Lee ◽  
Yun-Chan Hwang ◽  
Seok-Woo Chang ◽  
Kee-Yeon Kum ◽  
...  

2020 ◽  
Vol 9 (1) ◽  
pp. 538-553
Author(s):  
Saiqa Andleeb ◽  
Faiza Tariq ◽  
Areesha Muneer ◽  
Tooba Nazir ◽  
Beenish Shahid ◽  
...  

AbstractThe current research aimed to evaluate in vitro biological activities of green-synthesized silver nanoparticles using the Allium sativum clove extract. The stability of green-synthesized silver nanoparticles was evaluated via storage at 4°C, room temperature (37°C), and calcined at 300°C, 500°C, and 700°C. The antibacterial effect was evaluated using agar well, spread plate, biofilm reduction, and cell proliferation inhibition assays. The cytotoxic and antidiabetic effects were determined via brine shrimp lethality, protein kinase inhibition, and α-amylase inhibition assays. DPPH scavenging, iron-chelating, anticoagulant, and hemolytic effects were evaluated. The highest inhibition of Klebsiella pneumoniae was observed when freshly prepared, calcined (300°C), and stored nanoparticles (4°C and 37°C) were applied (9.66, 9.55, 7.33, and 6.65 mm) against freshly prepared and calcined at 700°C which showed the highest inhibition of Pseudomonas aeruginosa (8.55 and 7.66 mm). Cell viability assay, biofilm reduction assay, and spread plate method showed a significant antibacterial effect of freshly prepared silver nanoparticles. Freshly prepared and calcined nanoparticles at 300°C and 500°C possessed strong antioxidant and iron-chelating activity. Among all the synthesized silver nanoparticles, freshly prepared and calcined nanoparticles (300°C and 500°C) increases the prothrombin time. Silver nanoparticles possessed significant anticoagulant properties and less toxic at least concentration toward human RBCs. In brine shrimp lethality assay, freshly prepared nanoparticles showed a stronger toxic effect and caused high mortality of larvae. Protein kinase inhibition assay revealed that freshly prepared nanoparticles had the highest zone of inhibition (18.0 mm) at 50 µg/disc. Green-synthesized nanoparticles would be used as potential therapeutic agents to overcome both infectious and noninfectious diseases.


2016 ◽  
Vol 6 (10) ◽  
pp. 807-810 ◽  
Author(s):  
Debasish Kar ◽  
Samiran Bandyopadhyay ◽  
Umesh Dimri ◽  
Deba Brata Mondal ◽  
Pramod Kumar Nanda ◽  
...  

2020 ◽  
pp. 514-524
Author(s):  
Omnia A Khalil ◽  
Mona I Enbaawy ◽  
Taher Salah ◽  
Hossam Mahmoud ◽  
Eman Ragab

Despite the presence of modern antibacterial drugs, bacterial infections are still a major threatening problem due to the enormous increase in multi-drug-resistant bacteria. Nanoparticles have been extensively used as an applicable and safe alternative to antibiotics. The present study aimed to explore the inhibitory effect of silver nanoparticles on Extended Spectrum Beta lactamase (ESBL) producing E. coli and Klebsiella spp. in vitro as well as their effect on the expression of antibiotic resistance genes. Different samples (i.e., wound swabs, Fecal swabs, and urine samples) were collected from dogs and cats. Phenotypic and molecular identification, antibiotic susceptibility testing, and double-disk synergy test were carried out for the identification of ESBL producing E. coli and Klebsiella spp. Silver nanoparticles were tested for their in vitro antibacterial potential and there were reports of their minimum inhibitory concentration and minimum bactericidal concentration. Moreover, the effect of silver nanoparticles on the expression of antibiotic resistance genes (i.e., blaTEM, blaSHV, and blaCTX) was assessed as well as their effect on the structural integrity of the bacterial cells using Scanning Electron Microscope (SEM). Results revealed that 23 isolates (19.16%) (E. coli=17, Klebsiella spp.=6) were confirmed as ESBL producing. Silver nanoparticles indicated a promising antibacterial effect where the minimum inhibitory concentration of AgNPs for ESBL producing E. coli was measured as 0.31 mg/ml, and 0.62 mg/ml for ESBL-producing Klebsiella spp., while the minimum bactericidal concentration of ESBL-producing E. coli and Klebsiella spp. was reported as 0.15 mg/ml and 0.3 mg/ml, respectively. Consequently, the expression of antibiotic resistance genes was downregulated in both bacteria species and there was a noticeable toxic effect of AgNPs on E. coli and Klebsiella spp. cells which was investigated using SEM. It can be concluded that silver nanoparticles have a promising antibacterial activity and could be considered an applicable alternative for the control of ESBL producing bacteria.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Narayanaswamy Krithiga ◽  
Athimoolam Rajalakshmi ◽  
Ayyavoo Jayachitra

Bionanotechnology has emerged up as integration between biotechnology and nanotechnology for developing biosynthetic and environmental friendly technology for synthesis of nanomaterials. Silver has been known to have effective bactericidal properties for centuries. Nowadays, silver based topical dressings have been widely used as a treatment for infection in burns, open wounds, and chronic ulcer. As the pathogenic organisms are getting evolved day by day due to mutation and gaining antibiotic resistance, an important industrial sector of nanoscience deals with the preparation and study of nanoparticles in antibacterial clothing, burn ointments, and coating for medical device. The size of nanomaterials is much smaller than that of most biological molecules and structures; therefore, nanomaterials can be useful in both in vivo and in vitro biomedical research application. The purpose of the study is to synthesize and characterize the plant mediated silver nanoparticles using Clitoria ternatea and Solanum nigrum. Further investigation of the shape and size of nanoparticle was done by X-ray diffraction and scanning electron microscopic studies. A silver nanoparticle at different concentration was assessed for its antibacterial effect, against various nosocomial pathogens.


2020 ◽  
Vol 36 (4) ◽  
pp. 87-93
Author(s):  
V.Yu. Reshetova ◽  
A.F. Krivoshchepov ◽  
I.A. Butorova ◽  
N.B. Feldman ◽  
S.V. Lutsenko ◽  
...  

Chitosan beads with colloidal silver nanoparticles inclued in the polymer matrix have been obtained by the introduction of chitosan into an acidified nanosilver sol. Dual interconnection of drops of the resulting solution was then carried out by ionotropic gelation at the first stage and covalent crosslinking of the polymer matrix with adipic acid at the second stage. The surface morphology of the obtained beads was studied by scanning electron microscopy. Data of Fourier transform IR spectroscopy confirmed the formation of covalent bonds between chitosan and adipic acid. The antibacterial activity of obtained beads against S. aureus and E. coli was evaluated using agar diffusion test. It was shown that the сhitosan beads modified with nanostructured silver exhibited an antibacterial effect against the tested strains, and they can be used as a basis for creating biodegradable wound healing dressings with a prolonged antibacterial effect. chitosan, silver nanoparticles, antibacterial activity, wound dressings This work was supported by the "Russian Academic Excellence Project 5-100". The study was carried out with the financial support of the Russian Foundation for Basic Research in the framework of the Scientific Project no. 18-29-18039.


Sign in / Sign up

Export Citation Format

Share Document