scholarly journals An improved lower bound for $(1,\leq 2)$-identifying codes in the king grid

2014 ◽  
Vol 8 (1) ◽  
pp. 35-52 ◽  
Author(s):  
Aline Parreau ◽  
Tero Laihonen ◽  
Florent Foucaud
10.37236/727 ◽  
2008 ◽  
Vol 15 (1) ◽  
Author(s):  
Iiro Honkala ◽  
Tero Laihonen

Assume that $G = (V, E)$ is an undirected graph, and $C \subseteq V$. For every $v \in V$, we denote $I_r(G;v) = \{ u \in C: d(u,v) \leq r\}$, where $d(u,v)$ denotes the number of edges on any shortest path from $u$ to $v$. If all the sets $I_r(G;v)$ for $v \in V$ are pairwise different, and none of them is the empty set, the code $C$ is called $r$-identifying. If $C$ is $r$-identifying in all graphs $G'$ that can be obtained from $G$ by deleting at most $t$ edges, we say that $C$ is robust against $t$ known edge deletions. Codes that are robust against $t$ unknown edge deletions form a related class. We study these two classes of codes in the king grid with the vertex set ${\Bbb Z}^2$ where two different vertices are adjacent if their Euclidean distance is at most $\sqrt{2}$.


10.37236/7828 ◽  
2019 ◽  
Vol 26 (2) ◽  
Author(s):  
Ville Junnila ◽  
Tero Laihonen ◽  
Tuomo Lehtilä

In 2013, Goddard and Wash studied identifying codes in the Hamming graphs $K_q^n$. They stated, for instance, that $\gamma^{ID}(K_q^n)\leqslant q^{n-1}$ for any $q$ and $n\geqslant 3$. Moreover, they conjectured that $\gamma^{ID}(K_q^3)=q^2$. In this article, we show that $\gamma^{ID}(K_q^3)\leqslant q^2-q/4$ when $q$ is a power of four, which disproves the conjecture. Goddard and Wash also gave the lower bound $\gamma^{ID}(K_q^3)\geqslant q^2-q\sqrt{q}$. We improve this bound to $\gamma^{ID}(K_q^3)\geqslant q^2-\frac{3}{2} q$. Moreover, we improve the above mentioned bound $\gamma^{ID}(K_q^n)\leqslant q^{n-1}$ to $\gamma^{ID}(K_q^n)\leqslant q^{n-k}$ for $n=3\frac{q^k-1}{q-1}$ and to $\gamma^{ID}(K_q^n)\leqslant 3q^{n-k}$ for $n=\frac{q^k-1}{q-1}$, when $q$ is a prime power. For these bounds, we utilize two classes of closely related codes, namely, the self-identifying and the self-locating-dominating codes. In addition, we show that the self-locating-dominating codes satisfy the result $\gamma^{SLD}(K_q^3)=q^2$ related to the above conjecture.


10.37236/2414 ◽  
2012 ◽  
Vol 19 (2) ◽  
Author(s):  
Ville Junnila ◽  
Tero Laihonen

An $r$-identifying code in a graph $G = (V,E)$ is a subset $C \subseteq V$ such that for each $u \in V$ the intersection of $C$ and the ball of radius $r$ centered at $u$ is non-empty and unique. Previously, $r$-identifying codes have been studied in various grids. In particular, it has been shown that there exists a $2$-identifying code in the hexagonal grid with density $4/19$ and that there are no $2$-identifying codes with density smaller than $2/11$. Recently, the lower bound has been improved to $1/5$ by Martin and Stanton (2010). In this paper, we prove that the $2$-identifying code with density $4/19$ is optimal, i.e. that there does not exist a $2$-identifying code in the hexagonal grid with smaller density.


10.37236/202 ◽  
2009 ◽  
Vol 16 (1) ◽  
Author(s):  
Daniel W. Cranston ◽  
Gexin Yu

Given a graph $G$, an identifying code ${\cal D}\subseteq V(G)$ is a vertex set such that for any two distinct vertices $v_1,v_2\in V(G)$, the sets $N[v_1]\cap{\cal D}$ and $N[v_2]\cap{\cal D}$ are distinct and nonempty (here $N[v]$ denotes a vertex $v$ and its neighbors). We study the case when $G$ is the infinite hexagonal grid $H$. Cohen et.al. constructed two identifying codes for $H$ with density $3/7$ and proved that any identifying code for $H$ must have density at least $16/39\approx0.410256$. Both their upper and lower bounds were best known until now. Here we prove a lower bound of $12/29\approx0.413793$.


2019 ◽  
Vol 485 (2) ◽  
pp. 142-144
Author(s):  
A. A. Zevin

Solutions x(t) of the Lipschitz equation x = f(x) with an arbitrary vector norm are considered. It is proved that the sharp lower bound for the distances between successive extremums of xk(t) equals π/L where L is the Lipschitz constant. For non-constant periodic solutions, the lower bound for the periods is 2π/L. These estimates are achieved for norms that are invariant with respect to permutation of the indices.


10.37236/1188 ◽  
1994 ◽  
Vol 1 (1) ◽  
Author(s):  
Geoffrey Exoo

For $k \geq 5$, we establish new lower bounds on the Schur numbers $S(k)$ and on the k-color Ramsey numbers of $K_3$.


Sign in / Sign up

Export Citation Format

Share Document