scholarly journals List vertex arboricity of planar graphs without 5-cycles intersecting with 6-cycles

2021 ◽  
Vol 6 (9) ◽  
pp. 9757-9769
Author(s):  
Yanping Yang ◽  
◽  
Yang Wang ◽  
Juan Liu ◽  
2017 ◽  
Vol 35 (2) ◽  
pp. 365-372 ◽  
Author(s):  
Hua Cai ◽  
Jianliang Wu ◽  
Lin Sun

2020 ◽  
Vol 836 ◽  
pp. 53-58
Author(s):  
Xuyang Cui ◽  
Wenshun Teng ◽  
Xing Liu ◽  
Huijuan Wang

2020 ◽  
Vol 36 (2) ◽  
pp. 439-447
Author(s):  
Wei-fan Wang ◽  
Li Huang ◽  
Min Chen

2008 ◽  
Vol 29 (4) ◽  
pp. 1064-1075 ◽  
Author(s):  
André Raspaud ◽  
Weifan Wang

2012 ◽  
Vol 33 (5) ◽  
pp. 905-923 ◽  
Author(s):  
Min Chen ◽  
André Raspaud ◽  
Weifan Wang

2012 ◽  
Vol 312 (15) ◽  
pp. 2304-2315 ◽  
Author(s):  
Danjun Huang ◽  
Wai Chee Shiu ◽  
Weifan Wang

2020 ◽  
Vol 12 (06) ◽  
pp. 2050080
Author(s):  
Wenshun Teng ◽  
Huijuan Wang

The vertex arboricity [Formula: see text] of a graph [Formula: see text] is the minimum number of colors the vertices of the graph [Formula: see text] can be colored so that every color class induces an acyclic subgraph of [Formula: see text]. There are many results on the vertex arboricity of planar graphs. In this paper, we replace planar graphs with graphs which can be embedded in a surface [Formula: see text] of Euler characteristic [Formula: see text]. We prove that for the graph [Formula: see text] which can be embedded in a surface [Formula: see text] of Euler characteristic [Formula: see text] if no [Formula: see text]-cycle intersects a [Formula: see text]-cycle, or no [Formula: see text]-cycle intersects a [Formula: see text]-cycle, then [Formula: see text] in addition to the [Formula: see text]-regular quadrilateral mesh.


2007 ◽  
Vol 307 (19-20) ◽  
pp. 2438-2447 ◽  
Author(s):  
Yang Aifeng ◽  
Yuan Jinjiang

2013 ◽  
Vol 90 (2) ◽  
pp. 258-272 ◽  
Author(s):  
Danjun Huang ◽  
Weifan Wang

Sign in / Sign up

Export Citation Format

Share Document