scholarly journals A Gronwall lemma for functions of two variables and its application to partial differential equations of fractional order

2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Dariusz Idczak
Author(s):  
Nkosingiphile Mnguni ◽  
Sameerah Jamal

Abstract This paper considers two categories of fractional-order population growth models, where a time component is defined by Riemann–Liouville derivatives. These models are studied under the Lie symmetry approach, and we reduce the fractional partial differential equations to nonlinear ordinary differential equations. Subsequently, solutions of the latter are determined numerically or with the aid of Laplace transforms. Graphical representations for integral and trigonometric solutions are presented. A key feature of these models is the connection between spatial patterning of organisms versus competitive coexistence.


2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Yongjin Li ◽  
Kamal Shah

We develop a numerical method by using operational matrices of fractional order integrations and differentiations to obtain approximate solutions to a class of coupled systems of fractional order partial differential equations (FPDEs). We use shifted Legendre polynomials in two variables. With the help of the aforesaid matrices, we convert the system under consideration to a system of easily solvable algebraic equation of Sylvester type. During this process, we need no discretization of the data. We also provide error analysis and some test problems to demonstrate the established technique.


Sign in / Sign up

Export Citation Format

Share Document