scholarly journals Stochastic maximum principle for systems driven by local martingales with spatial parameters

2021 ◽  
Vol 6 (3) ◽  
pp. 213
Author(s):  
Jian Song ◽  
Meng Wang

<p style='text-indent:20px;'>We consider the stochastic optimal control problem for the dynamical system of the stochastic differential equation driven by a local martingale with a spatial parameter. Assuming the convexity of the control domain, we obtain the stochastic maximum principle as the necessary condition for an optimal control, and we also prove its sufficiency under proper conditions. The stochastic linear quadratic problem in this setting is also discussed.</p>

2014 ◽  
Vol 2014 ◽  
pp. 1-12
Author(s):  
Qingmeng Wei

We focus on the fully coupled forward-backward stochastic differential equations with jumps and investigate the associated stochastic optimal control problem (with the nonconvex control and the convex state constraint) along with stochastic maximum principle. To derive the necessary condition (i.e., stochastic maximum principle) for the optimal control, first we transform the fully coupled forward-backward stochastic control system into a fully coupled backward one; then, by using the terminal perturbation method, we obtain the stochastic maximum principle. Finally, we study a linear quadratic model.


2012 ◽  
Vol 2012 ◽  
pp. 1-29 ◽  
Author(s):  
Shaolin Ji ◽  
Qingmeng Wei ◽  
Xiumin Zhang

We study the optimal control problem of a controlled time-symmetric forward-backward doubly stochastic differential equation with initial-terminal state constraints. Applying the terminal perturbation method and Ekeland’s variation principle, a necessary condition of the stochastic optimal control, that is, stochastic maximum principle, is derived. Applications to backward doubly stochastic linear-quadratic control models are investigated.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Jie Xu ◽  
Ruiqiang Lin

In this paper, we study a kind of near optimal control problem which is described by linear quadratic doubly stochastic differential equations with time delay. We consider the near optimality for the linear delayed doubly stochastic system with convex control domain. We discuss the case that all the time delay variables are different. We give the maximum principle of near optimal control for this kind of time delay system. The necessary condition for the control to be near optimal control is deduced by Ekeland’s variational principle and some estimates on the state and the adjoint processes corresponding to the system.


2012 ◽  
Vol 2012 ◽  
pp. 1-16 ◽  
Author(s):  
Zhen Wu ◽  
Feng Zhang

We consider a stochastic recursive optimal control problem in which the control variable has two components: the regular control and the impulse control. The control variable does not enter the diffusion coefficient, and the domain of the regular controls is not necessarily convex. We establish necessary optimality conditions, of the Pontryagin maximum principle type, for this stochastic optimal control problem. Sufficient optimality conditions are also given. The optimal control is obtained for an example of linear quadratic optimization problem to illustrate the applications of the theoretical results.


Sign in / Sign up

Export Citation Format

Share Document