Collective phenomena on metallic surfaces studied with scanning tunneling microscopy and low energy electron microscopy

2022 ◽  
Author(s):  
Martina Tsvetanova
Author(s):  
Ellen D. Williams ◽  
R.J. Phaneuf ◽  
N.C. Bartelt ◽  
W. Swiech ◽  
E. Bauer

Elastic stresses play a well-known and important role in the structure of thin films during growth. However, elastic effects can also greatly influence surface morphology of the substrate. One source of this influence, as has long been recognized is the elastic interactions between steps on surfaces. More recently, Marchenko has shown that surface stress can stabilize finite-size structures in surfaces, such as facets. Traditionally surface morphologies such as steps and facets have been measured by low-energy electron diffraction. However, the more recent development of ultra-high vacuum compatible microscopic techniques such as scanning tunneling microscopy, reflection electron microscopy, and low-energy electron microscopy, now make it possible to image steps and facets directly to obtain information about sizes and size distributions. This information in turn makes it possible to test the influence of stress on surface morphology directly.


1996 ◽  
Vol 69 (21) ◽  
pp. 3245-3247 ◽  
Author(s):  
D. E. Jones ◽  
J. P. Pelz ◽  
Y. Hong ◽  
I. S. T. Tsong ◽  
Y.‐H. Xie ◽  
...  

2014 ◽  
Vol 10 ◽  
pp. 2055-2064 ◽  
Author(s):  
Stefan Gärtner ◽  
Benjamin Fiedler ◽  
Oliver Bauer ◽  
Antonela Marele ◽  
Moritz M Sokolowski

We have investigated the adsorption of perylene-3,4,9,10-tetracarboxylic acid dianhydride (PTCDA) on the clean and on the oxygen pre-covered Cu(100) surface [referred to as (√2 × 2√2)R45° – 2O/Cu(100)] by scanning tunneling microscopy (STM) and low energy electron diffraction (LEED). Our results confirm the (4√2 × 5√2)R45° superstructure of PTCDA/Cu(100) reported by A. Schmidt et al. [J. Phys. Chem. 1995, 99,11770–11779]. However, contrary to Schmidt et al., we have no indication for a dissociation of the PTCDA upon adsorption, and we propose a detailed structure model with two intact PTCDA molecules within the unit cell. Domains of high lateral order are obtained, if the deposition is performed at 400 K. For deposition at room temperature, a significant density of nucleation defects is found pointing to a strong interaction of PTCDA with Cu(100). Quite differently, after preadsorption of oxygen and formation of the (√2 × 2√2)R45° – 2O/Cu(100) superstructure on Cu(100), PTCDA forms an incommensurate monolayer with a structure that corresponds well to that of PTCDA bulk lattice planes.


Author(s):  
Joseph Smerdon ◽  
Joseph Parle ◽  
Ronan McGrath ◽  
Birgitta Bauer ◽  
Peter Gille

AbstractLow-energy electron diffraction (LEED) and scanning tunneling microscopy (STM) results are used to study the pseudo-6-fold nature of the (100) surface of the orthorhombic quasicrystal approximant Al


Sign in / Sign up

Export Citation Format

Share Document