scholarly journals Teaching of Remote Sensing Technology for Landscape Architecture in the Context of Spatial Information Technology

Author(s):  
Xueling Zhang ◽  
Dayu Zhang

The research of digital landscape architecture springs up in recent years. The emerging digital technology provides a rational and objective method to mine and quantify the endogenous laws of landscape architecture. Remote sensing (RS) technology has become a new growth point in the current research and design of landscape spatial information. To develop the professional teaching of landscape architecture, it is important to fully integrate the RS technology into the teaching system of spatial information technology, carry out systematic spatial information quantification and research-based teaching of landscape architecture, and collaboratively promote the teaching of landscape architecture design. This paper firstly analyzes the integration and application potential of RS technology into landscape architecture. Considering the demand and trend of information-based teaching of landscape architecture, the authors integrated the relevant technologies into an RS teaching platform for landscape architecture, and summarized an application model of RS technology in the teaching of landscape architecture theories and practices. Moreover, a landscape spatial information chain, which is question-oriented, task-driven, and exploration-based, was constructed to promote the synergistic development between the students’ research and practice ability under spatial information integration.

2021 ◽  
Vol 6 (1) ◽  
pp. 024-034
Author(s):  
Atriyon Julzarika ◽  
Harintaka Harintaka ◽  
Tatik Kartika

Vegetation height is an important parameter in monitoring peatlands. Vegetation height can be estimated using remote sensing. Vegetation height can be estimated by utilizing DSM and DTM. The data that can be used are LiDAR, X-SAR, and SRTM C. In this study, LiDAR data is used for DSM2018 and DTM2018 extraction. The purpose of this research is to detect the vegetation height in Central Kalimantan peatlands using remote sensing technology. The research location is in Bakengbongkei, Kalampangan, Central Kalimantan. The integration of X-SAR and SRTM C is used for DSM2000 and DTM2000 extraction. DSM2000, DTM2000, DSM2018, and DTM2018 performed height error correction with tolerance of 1.96? (95%). Then do the geoid undulation correction to EGM2008. The results obtained are DSM and DTM with a similar height reference field. If it meets these conditions it can be calculated the vegetation height estimation. Vegetation height can be obtained using the Differential DEM method. The Changing in vegetation height from 2000 to 2018 can be estimated from the difference in vegetation height from 2000 to vegetation height in 2018. Results of spatial information on vegetation height and its changes need to be tested for the accuracy. This accuracy-test includes a cross section test, height difference test, and comparison with measurements of vegetation height in the field. The results of this research can be used to monitor the changing the vegetation height in peatlands.


2019 ◽  
Vol 4 (4) ◽  
pp. 70
Author(s):  
Iau-Teh Wang

The evaluation of portal locations for mountain tunnels is among the most crucial considerations during route selection and structural layout planning. The development of spatial information technology has provided a more objective approach for assessing the slope stability of potential portal sites. The simulations in such studies have been performed to evaluate potential hazards and slope stability. However, potential instabilities resulting from excavation are seldom considered in these studies. Therefore, a method based on spatial information technology was developed in this study for considering the potential impact of the direction and depth of excavations on portal stability. An analysis method for an infinite slope was integrated into the geographical information system for evaluating the stability of critical wedges. The proposed method provides a reasonable estimation comparable with that provided by the conventional slice method. The results of applying this method to six mountain tunnel portals where slope instability occurred during construction indicate that the actual outcomes agreed with the predicted outcomes. For potential portal site evaluation, the proposed method facilitates the rapid estimation of safety factors for various slope designations, which is useful for site selection.


2006 ◽  
Vol 82 (2) ◽  
pp. 211-218 ◽  
Author(s):  
David L Evans ◽  
Scott D Roberts ◽  
Robert C Parker

LiDAR (Light Detection and Ranging) is a remote sensing technology with strong application potential in forest resource management. It provides high measurement precision that can be used for tree and stand measurements. Although LiDAR has not been used widely as an operational measurement tool, there is a significant body of research and a number of projects at Mississippi State University (MSU) that illustrate the potential for this technology to be incorporated into operational forest assessments. This paper provides basic background on the capabilities of LiDAR in a forest measurement context that illustrates specific examples of LiDAR use including: 1) individual tree assessments, 2) a forest inventory protocol currently being operationally tested, 3) forest structure analysis, and 4) forest typing. Key words: LiDAR, remote sensing, tree identification, tree measurements, forest inventory, forest types


Sign in / Sign up

Export Citation Format

Share Document