Secure Two-Party Association Rule Mining Based on One-Pass FP-Tree

Author(s):  
Golam Kaosar ◽  
Xun Yi

Frequent Path tree (FP-tree) is a popular method to compute association rules and is faster than Apriori-based solutions in some cases. Association rule mining using FP-tree method cannot ensure entire privacy since frequency of the itemsets are required to share among participants at the first stage. Moreover, FP-tree method requires two scans of database transactions which may not be the best solution if the database is very large or the database server does not allow multiple scans. In addition, one-pass FP-tree can accommodate continuous or periodically changing databases without restarting the process as opposed to a regular FP-tree based solution. In this paper, the authors propose a one-pass FP-tree method to perform association rule mining without compromising any data privacy among two parties. A fully homomorphic encryption system over integer numbers is applied to ensure secure computation among two data sites without disclosing any number belongs to themselves.

2011 ◽  
Vol 5 (2) ◽  
pp. 13-32 ◽  
Author(s):  
Golam Kaosar ◽  
Xun Yi

Frequent Path tree (FP-tree) is a popular method to compute association rules and is faster than Apriori-based solutions in some cases. Association rule mining using FP-tree method cannot ensure entire privacy since frequency of the itemsets are required to share among participants at the first stage. Moreover, FP-tree method requires two scans of database transactions which may not be the best solution if the database is very large or the database server does not allow multiple scans. In addition, one-pass FP-tree can accommodate continuous or periodically changing databases without restarting the process as opposed to a regular FP-tree based solution. In this paper, the authors propose a one-pass FP-tree method to perform association rule mining without compromising any data privacy among two parties. A fully homomorphic encryption system over integer numbers is applied to ensure secure computation among two data sites without disclosing any number belongs to themselves.


Author(s):  
Madhu V. Ahluwalia ◽  
Aryya Gangopadhyay ◽  
Zhiyuan Chen

Association rule mining is an important data mining method that has been studied extensively by the academic community and has been applied in practice. In the context of association rule mining, the state-of-the-art in privacy preserving data mining provides solutions for categorical and Boolean association rules but not for quantitative association rules. This article fills this gap by describing a method based on discrete wavelet transform (DWT) to protect input data privacy while preserving data mining patterns for association rules. A comparison with an existing kd-tree based transform shows that the DWT-based method fares better in terms of efficiency, preserving patterns, and privacy.


2009 ◽  
Vol 3 (4) ◽  
pp. 1-17 ◽  
Author(s):  
Madhu V. Ahluwalia ◽  
Aryya Gangopadhyay ◽  
Zhiyuan Chen

Association rule mining is an important data mining method that has been studied extensively by the academic community and has been applied in practice. In the context of association rule mining, the state-of-the-art in privacy preserving data mining provides solutions for categorical and Boolean association rules but not for quantitative association rules. This article fills this gap by describing a method based on discrete wavelet transform (DWT) to protect input data privacy while preserving data mining patterns for association rules. A comparison with an existing kd-tree based transform shows that the DWT-based method fares better in terms of efficiency, preserving patterns, and privacy.


2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
Zhicong Kou ◽  
Lifeng Xi

An effective data mining method to automatically extract association rules between manufacturing capabilities and product features from the available historical data is essential for an efficient and cost-effective product development and production. This paper proposes a new binary particle swarm optimization- (BPSO-) based association rule mining (BPSO-ARM) method for discovering the hidden relationships between machine capabilities and product features. In particular, BPSO-ARM does not need to predefine thresholds of minimum support and confidence, which improves its applicability in real-world industrial cases. Moreover, a novel overlapping measure indication is further proposed to eliminate those lower quality rules to further improve the applicability of BPSO-ARM. The effectiveness of BPSO-ARM is demonstrated on a benchmark case and an industrial case about the automotive part manufacturing. The performance comparison indicates that BPSO-ARM outperforms other regular methods (e.g., Apriori) for ARM. The experimental results indicate that BPSO-ARM is capable of discovering important association rules between machine capabilities and product features. This will help support planners and engineers for the new product design and manufacturing.


Semantic Web ◽  
2013 ◽  
pp. 76-96
Author(s):  
Luca Cagliero ◽  
Tania Cerquitelli ◽  
Paolo Garza

This paper presents a novel semi-automatic approach to construct conceptual ontologies over structured data by exploiting both the schema and content of the input dataset. It effectively combines two well-founded database and data mining techniques, i.e., functional dependency discovery and association rule mining, to support domain experts in the construction of meaningful ontologies, tailored to the analyzed data, by using Description Logic (DL). To this aim, functional dependencies are first discovered to highlight valuable conceptual relationships among attributes of the data schema (i.e., among concepts). The set of discovered correlations effectively support analysts in the assertion of the Tbox ontological statements (i.e., the statements involving shared data conceptualizations and their relationships). Then, the analyst-validated dependencies are exploited to drive the association rule mining process. Association rules represent relevant and hidden correlations among data content and they are used to provide valuable knowledge at the instance level. The pushing of functional dependency constraints into the rule mining process allows analysts to look into and exploit only the most significant data item recurrences in the assertion of the Abox ontological statements (i.e., the statements involving concept instances and their relationships).


Author(s):  
Carson Kai-Sang Leung

The problem of association rule mining was introduced in 1993 (Agrawal et al., 1993). Since then, it has been the subject of numerous studies. Most of these studies focused on either performance issues or functionality issues. The former considered how to compute association rules efficiently, whereas the latter considered what kinds of rules to compute. Examples of the former include the Apriori-based mining framework (Agrawal & Srikant, 1994), its performance enhancements (Park et al., 1997; Leung et al., 2002), and the tree-based mining framework (Han et al., 2000); examples of the latter include extensions of the initial notion of association rules to other rules such as dependence rules (Silverstein et al., 1998) and ratio rules (Korn et al., 1998). In general, most of these studies basically considered the data mining exercise in isolation. They did not explore how data mining can interact with the human user, which is a key component in the broader picture of knowledge discovery in databases. Hence, they provided little or no support for user focus. Consequently, the user usually needs to wait for a long period of time to get numerous association rules, out of which only a small fraction may be interesting to the user. In other words, the user often incurs a high computational cost that is disproportionate to what he wants to get. This calls for constraint-based association rule mining.


Sign in / Sign up

Export Citation Format

Share Document