A Multi-Level Approach for the Numerical Modelling of Complex Monumental Buildings

Author(s):  
Siro Casolo ◽  
Andrea Fiore ◽  
Francesco Porco ◽  
Domenico Raffaele ◽  
Carlo Alberto Sanjust ◽  
...  

Monumental buildings are characterized by elements (such as columns, vaults, arches …) that can suffer significant damage even under moderate earthquakes. Unfortunately, the available modeling approaches require a huge amount of computing resources. The chapter presents a multi-level strategy that is able to overcome these difficulties by a rational adoption of different computational approaches. As a case study, the non-linear seismic assessment of the medieval “Maniace Castle”, in Syracuse (Sicily, Italy) is developed, by using different numerical models. First, the linear behavior of the building is studied by means of two 3D Finite Element models. Then, results are used to calibrate a 2D plane Rigid Body and Spring Model (RBSM), specifically formulated for approximating the macroscopic behavior of masonry texture with a small number of degrees of freedom. In order to account for the variability of the material characteristics, parametric non-linear analyses have been performed and compared.

Author(s):  
Siro Casolo ◽  
Andrea Fiore ◽  
Francesco Porco ◽  
Domenico Raffaele ◽  
Carlo Alberto Sanjust ◽  
...  

Monumental buildings are characterized by elements (such as columns, vaults, arches …) that can suffer significant damage even under moderate earthquakes. Unfortunately, the available modeling approaches require a huge amount of computing resources. The chapter presents a multi-level strategy that is able to overcome these difficulties by a rational adoption of different computational approaches. As a case study, the non-linear seismic assessment of the medieval “Maniace Castle”, in Syracuse (Sicily, Italy) is developed, by using different numerical models. First, the linear behavior of the building is studied by means of two 3D Finite Element models. Then, results are used to calibrate a 2D plane Rigid Body and Spring Model (RBSM), specifically formulated for approximating the macroscopic behavior of masonry texture with a small number of degrees of freedom. In order to account for the variability of the material characteristics, parametric non-linear analyses have been performed and compared.


2015 ◽  
Vol 815 ◽  
pp. 49-53
Author(s):  
Nur Fitriah Isa ◽  
Mohd Zulham Affandi Mohd Zahid ◽  
Liyana Ahmad Sofri ◽  
Norrazman Zaiha Zainol ◽  
Muhammad Azizi Azizan ◽  
...  

In order to promote the efficient use of composite materials in civil engineering infrastructure, effort is being directed at the development of design criteria for composite structures. Insofar as design with regard to behavior is concerned, it is well known that a key step is to investigate the influence of geometric differences on the non-linear behavior of the panels. One possible approach is to use the validated numerical model based on the non-linear finite element analysis (FEA). The validation of the composite panel’s element using Trim-deck and Span-deck steel sheets under axial load shows that the present results have very good agreement with experimental references. The developed finite element (FE) models are found to reasonably simulate load-displacement response, stress condition, giving percentage of differences below than 15% compared to the experimental values. Trim-deck design provides better axial resistance than Span-deck. More concrete in between due to larger area of contact is the factor that contributes to its resistance.


Author(s):  
Adriano Castelo ◽  
David White ◽  
Yinghui Tian

In 2000 the first case of pipeline walking (PW) was properly documented when this phenomenon seriously impacted a North Sea high pressure and high temperature (HP/HT) pipeline (Tornes et al. 2000). By then, the main drivers of this problem were accordingly identified for the case studied. On the other hand, to study other aspects related not only to PW, the industry joined forces in the SAFEBUCK Joint Industry Project (JIP) with academic partners. As a result, other drivers, which lead a pipeline to walk, have been identified (Bruton et al. 2010). Nowadays, during the design stage of pipelines, estimates are calculated for pipeline walking. These estimates often use a Rigid-Plastic (RP) soil idealization and the Coulomb friction principle (Carr et al. 2006). Unfortunately, this model does not reflect the real pipe-soil interaction behavior, and in practice time consuming finite element computations are often performed using an Elastic-Perfectly-Plastic (EPP) soil model. In reality, some observed axial pipe-soil responses are extremely non-linear and present a brittle peak strength before a strain softening response (White et al. 2011). This inaccuracy of the soil representation normally overestimates the Walking Rate (WR) (a rigid plastic soil model leads to greater walking). A magnified WR invariably leads to false interpretations besides being unrealistic. Finally, a distorted WR might also demand mitigating measures that could be avoided if the soil had been adequately treated. Unnecessary mitigation has a very strong and negative effect on the project as whole. It will require more financial and time investments for the entire development of the project — from design to construction activities. Therefore, having more realistic and pertinent estimates becomes valuable not only because of budgetary issues but also because of time frame limits. The present paper will show the results of a set of Finite Element Analyses (FEA) performed for a case-study pipeline. The analyses — carried out on ABAQUS software — used a specific subroutine code prepared to appropriately mimic Non-Linear Brittle Peak with Strain Softening (NLBPSS) axial pipe-soil interaction behavior. The specific subroutine code was represented in the Finite Element Models (FEMs) by a series of User Elements (UELs) attached to the pipe elements. The NLBPSS case is a late and exclusive contribution from the present work to the family of available pipeline walking solutions for different forms of axial pipe-soil interaction model. The parametric case-study results are benchmarked against theoretical calculations of pipeline walking showing that the case study results deliver a reasonable accuracy level and are reliable. The results are then distilled into a simplified method in which the WR for NLBPSS soil can be estimated by adjusting a solution derived for RP and EPP soil. The key outcome is a genuine method to correct the WR resultant from a RP soil approach to allow for peak and softening behaviour. It provides a design tool that extends beyond the previously-available solutions and allows more rapid and efficient predictions of pipeline walking to be made. This contribution clarifies, for the downslope walking case, what is the most appropriate basis to incorporate or idealize the soil characteristics within the axial Pipe-Soil Interaction (PSI) response when performing PW assessments.


2019 ◽  
Vol 37 (1) ◽  
pp. 313-344
Author(s):  
Vijay Kumar Polimeru ◽  
Arghadeep Laskar

Purpose The purpose of this study is to evaluate the effectiveness of two-dimensional (2D) cyclic softened membrane model (CSMM)-based non-linear finite element (NLFE) model in predicting the complete non-linear response of shear critical bridge piers (with walls having aspect ratios greater than 2.5) under combined axial and reversed cyclic uniaxial bending loads. The effectiveness of the 2D CSMM-based NLFE model has been compared with the widely used one-dimensional (1D) fiber-based NLFE models. Design/methodology/approach Three reinforced concrete (RC) hollow rectangular bridge piers tested under reversed cyclic uniaxial bending and sustained axial loads at the National Centre for Research on Earthquake Engineering (NCREE) Taiwan have been simulated using both 1D and 2D models in the present study. The non-linear behavior of the bridge piers has been studied through various parameters such as hysteretic loops, energy dissipation, residual drift, yield load and corresponding drift, peak load and corresponding drift, ultimate loads, ductility, specimen stiffness and critical strains in concrete and steel. The results obtained from CSMM-based NLFE model have been critically compared with the test results and results obtained from the 1D fiber-based NLFE models. Findings It has been observed from the analysis results that both 1D and 2D simulation models performed well in predicting the response of flexure critical bridge pier. However, in the case of shear critical bridge piers, predictions from 2D CSMM-based NLFE simulation model are more accurate. It has, thus, been concluded that CSMM-based NLFE model is more accurate and robust to simulate the complete non-linear behavior of shear critical RC hollow rectangular bridge piers. Originality/value In this study, a novel attempt has been made to provide a rational and robust FE model for analyzing shear critical hollow RC bridge piers (with walls having aspect ratios greater than 2.5).


2019 ◽  
Vol 17 (08) ◽  
pp. 1950055 ◽  
Author(s):  
Haiyang Zeng ◽  
Wei Xu ◽  
Mengyan Zang ◽  
Peng Yang

In this work, an indoor soil-bin is designed to investigate the tire–terrain interaction mechanisms for the off-road tires rolling on the gravel terrain. The soil-bin test is carried out by the indoor soil-bin experimental device and the three-dimensional (3D) finite element (FE) and discrete element (DE) coupling method under the same particles conditions, respectively. First, with the indoor soil-bin measurement system, the repeatability of the soil-bin experiments is employed to validate the experimental device and the numerical models. Moreover, the tractive performance experiments of the off-road tires with two tread patterns, smooth and grooved interacting with gravel terrain, are performed at the slip of 10%, 20% and 30%, respectively, to obtain the tractive force and the rim sinkage. Second, the corresponding numerical models are also established, and simulated by the FE–DE coupling method, where the FEM and the DEM are used to describe the off-road tires and the gravel terrain, respectively. The tractive mechanisms of the off-road tires in interaction with the gravel terrain such as the tractive force and the rim sinkage are investigated numerically. Meanwhile, The dynamics and discontinuity of the gravel assembly are described by the presented approach. Besides, both the results of the simulations and experiments indicate that tread patterns and slip conditions have great influence on the tire tractive performance. Finally, the numerical simulations and the experimental results qualitatively show good agreements, which certifies the effectiveness of the FE–DE coupling method in the tractive performance analysis of tire–gravel terrain interactions.


2014 ◽  
Vol 38 ◽  
pp. 306-314 ◽  
Author(s):  
Mayara B. Ferreira ◽  
Valentim A. Barão ◽  
Juliana A. Delben ◽  
Leonardo P. Faverani ◽  
Ana Carolina Hipólito ◽  
...  

2019 ◽  
Author(s):  
Mariam Ahmed Al Hosani ◽  
Rashad Mohamed Masoud ◽  
Huda Abdullatif Al Beshr ◽  
Mohd Anwar Latif ◽  
Shamma Jasem Al Hammadi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document