An Efficient and Automatic Iris Recognition System Using ICM Neural Network

Author(s):  
Guangzhu Xu ◽  
Yide Ma ◽  
Zaifeng Zhang

Iris recognition has been shown to be very accurate for human identification. In this chapter, an efficient and automatic iris recognition system using Intersecting Cortical Model (ICM) neural network is presented which includes two parts mainly. The first part is image preprocessing which has three steps. First, iris location is implemented based on local areas. Then the localized iris area is normalized into a rectangular region with a fixed size. At last the iris image enhancement is implemented. In the second part, the ICM neural network is used to generate iris codes and the Hamming Distance between two iris codes is calculated to measure the dissimilarity. In order to evaluate the performance of the proposed algorithm, CASIA v1.0 iris image database is used and the recognition results show that the system has good performance.

2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Chen-Chung Liu ◽  
Pei-Chung Chung ◽  
Chia-Ming Lyu ◽  
Jui Liu ◽  
Shyr-Shen Yu

One of the key steps in the iris recognition system is the accurate iris segmentation from its surrounding noises including pupil, sclera, eyelashes, and eyebrows of a captured eye-image. This paper presents a novel iris segmentation scheme which utilizes the orientation matching transform to outline the outer and inner iris boundaries initially. It then employs Delogne-Kåsa circle fitting (instead of the traditional Hough transform) to further eliminate the outlier points to extract a more precise iris area from an eye-image. In the extracted iris region, the proposed scheme further utilizes the differences in the intensity and positional characteristics of the iris, eyelid, and eyelashes to detect and delete these noises. The scheme is then applied on iris image database, UBIRIS.v1. The experimental results show that the presented scheme provides a more effective and efficient iris segmentation than other conventional methods.


2019 ◽  
Vol 2 (1) ◽  
pp. 26-36
Author(s):  
Aumama M. Farhan ◽  
M. F. Al-Gailani

Iris recognition system is broadly being utilized as it has distinctive patterns that gives it a powerful strategy to distinguish between persons for identification purposes. However, this system in this implementation requires large memory capacity and high computation time. These factors make us in a challenge to find a way to run this algorithm in a hardware platform. The hardware implementation features reduce the execution time by exploiting the parallelism and pipeline. The present work addresses this issue when reducing execution time by implementing the matching step using hamming distance algorithm on the target device FPGA KINTEX 7 using Xilinx system generator. The obtained result demonstrates that the execution time has been accelerated to 1.32 ns, which is almost at least four times faster than existing works


2021 ◽  
Author(s):  
Wael Alnahari

Abstract In this paper, I proposed an iris recognition system by using deep learning via neural networks (CNN). Although CNN is used for machine learning, the recognition is achieved by building a non-trained CNN network with multiple layers. The main objective of the code the test pictures’ category (aka person name) with a high accuracy rate after having extracted enough features from training pictures of the same category which are obtained from a that I added to the code. I used IITD iris which included 10 iris pictures for 223 people.


2017 ◽  
Vol 1 (4-2) ◽  
pp. 175
Author(s):  
Abdulrahman Aminu Ghali ◽  
Sapiee Jamel ◽  
Kamaruddin Malik Mohamad ◽  
Nasir Abubakar Yakub ◽  
Mustafa Mat Deris

With the prominent needs for security and reliable mode of identification in biometric system. Iris recognition has become reliable method for personal identification nowadays. The system has been used for years in many commercial and government applications that allow access control in places such as office, laboratory, armoury, automated teller machines (ATMs), and border control in airport. The aim of the paper is to review iris recognition algorithms. Iris recognition system consists of four main stages which are segmentation, normalization, feature extraction and matching. Based on the findings, the Hough transform, rubber sheet model, wavelet, Gabor filter, and hamming distance are the most common used algorithms in iris recognition stages.  This shows that, the algorithms have the potential and capability to enhanced iris recognition system. 


Iris is most promising bio-metric trait for identification or authentication. Iris consists of patterns that are unique and highly random in nature .The discriminative property of iris pattern has attracted many researchers attention. The unimodal system, which uses only one bio-metric trait, suffers from limitation such as inter-class variation, intra-class variation and non-universality. The multi-modal bio-metric system has ability to overcome these drawbacks by fusing multiple biometric traits. In this paper, a multi-modal iris recognition system is proposed. The features are extracted using convolutional neural network and softmax classifier is used for multi-class classification. Finally, rank level fusion method is used to fuse right and left iris in order to improve the confidence level of identification. This method is tested on two data sets namely IITD and CASIA-Iris-V3.


Now a days, Iris recognition is wieldy used for the identification of person. The superior bit of 1 countries exploits biometric system for safety reason with the conclusion goal that in runway boarding, custom freedom, gathering passage, etc. The Iris detection at-a-Distance (IAAD) framework is generally used to identify the person in most of the applications. In this system, different features of iris image are extracted in addition enhances the superiority of iris image. Over the span of the most recent ages there consume raised various structures to design and finish iris affirmation systems which works at longer separation going from one meter to sixty meter. Because of such long scope of iris detection schemes in addition iris attainment scheme provides for the best applications to the client. Therefore, It is necessary to design an effective algorithm for IAAD is necessary. In this article, an actual method for iris recognition is presents. A Chronological Monarch Butterfly Optimization -based Deep Belief Network (Chronological MBO-based DBN) technique is anticipated for iris detection.This technique algorithm is the combination of Chronological theory with the Monarch Butterfly Optimization. It is utilized to mastermind the sequential presumption of an iris picture. Additionally, the Hough Transform calculation is utilized for discovery of iris circle and edge. To enhance the accuracy of anticipated iris recognition system ScatT-Loop descriptor and the Local Gradient Pattern (LGP) are fed to the Chronological MBO-based DBN algorithm and these are castoff to abstract the dissimilar features of an iris picture. The dataset used for these tactices are UBIRIS.v1 For the normalization and segmentation of an iris image is done by by means of Dougman's rubber sheet model. This system is established on MATLAB for executing the Hough transform procedures also for reading the iris images. The simulation results shows that this system successfully recognize the iris at a distance 4 to 8 meter. Different performance parameters like as FAR accuracy, too FRR shows better results in this anticipated work.


Sign in / Sign up

Export Citation Format

Share Document